Tap the blue circles to see an explanation.
$$ \begin{aligned}(\frac{3}{x+1}+\frac{2}{x-1})\frac{x+1}{x-1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5x-1}{x^2-1}\frac{x+1}{x-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5x-1}{x^2-2x+1}\end{aligned} $$ | |
① | To add raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{5x-1}{x^2-1} \cdot \frac{x+1}{x-1} & \xlongequal{\text{Step 1}} \frac{ 5x-1 }{ \left( x-1 \right) \cdot \color{red}{ \left( x+1 \right) } } \cdot \frac{ 1 \cdot \color{red}{ \left( x+1 \right) } }{ x-1 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 5x-1 }{ x-1 } \cdot \frac{ 1 }{ x-1 } \xlongequal{\text{Step 3}} \frac{ \left( 5x-1 \right) \cdot 1 }{ \left( x-1 \right) \cdot \left( x-1 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 5x-1 }{ x^2-x-x+1 } = \frac{5x-1}{x^2-2x+1} \end{aligned} $$ |