Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3(x+6)(x+6)}{3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{(3x+18)(x+6)}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3x^2+18x+18x+108}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3x^2+36x+108}{3}\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( x+6\right) $ $$ \color{blue}{3} \cdot \left( x+6\right) = 3x+18 $$ |
② | Multiply each term of $ \left( \color{blue}{3x+18}\right) $ by each term in $ \left( x+6\right) $. $$ \left( \color{blue}{3x+18}\right) \cdot \left( x+6\right) = 3x^2+18x+18x+108 $$ |
③ | $$ 3x^2+ \color{blue}{18x} + \color{blue}{18x} +108 = 3x^2+ \color{blue}{36x} +108 $$ |