Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{\frac{2x+4}{x-5}}{4x+20}}{x^2-25}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{x+2}{2x^2-50}}{x^2-25} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x+2}{2x^4-100x^2+1250}\end{aligned} $$ | |
① | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2x+4}{x-5} }{4x+20} & \xlongequal{\text{Step 1}} \frac{2x+4}{x-5} \cdot \frac{\color{blue}{1}}{\color{blue}{4x+20}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( x+2 \right) \cdot \color{blue}{2} }{ x-5 } \cdot \frac{ 1 }{ \left( 2x+10 \right) \cdot \color{blue}{2} } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x+2 }{ x-5 } \cdot \frac{ 1 }{ 2x+10 } \xlongequal{\text{Step 4}} \frac{ \left( x+2 \right) \cdot 1 }{ \left( x-5 \right) \cdot \left( 2x+10 \right) } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ x+2 }{ 2x^2+ \cancel{10x} -\cancel{10x}-50 } = \frac{x+2}{2x^2-50} \end{aligned} $$ |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x+2}{2x^2-50} }{x^2-25} & \xlongequal{\text{Step 1}} \frac{x+2}{2x^2-50} \cdot \frac{\color{blue}{1}}{\color{blue}{x^2-25}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( x+2 \right) \cdot 1 }{ \left( 2x^2-50 \right) \cdot \left( x^2-25 \right) } \xlongequal{\text{Step 3}} \frac{ x+2 }{ 2x^4-50x^2-50x^2+1250 } = \\[1ex] &= \frac{x+2}{2x^4-100x^2+1250} \end{aligned} $$ |