Tap the blue circles to see an explanation.
$$ \begin{aligned}(2x+2a)(x^2+2ax-a)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^3+4ax^2-2ax+2ax^2+4a^2x-2a^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4a^2x+6ax^2+2x^3-2a^2-2ax\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{2x+2a}\right) $ by each term in $ \left( x^2+2ax-a\right) $. $$ \left( \color{blue}{2x+2a}\right) \cdot \left( x^2+2ax-a\right) = 2x^3+4ax^2-2ax+2ax^2+4a^2x-2a^2 $$ |
② | Combine like terms: $$ 2x^3+ \color{blue}{4ax^2} -2ax+ \color{blue}{2ax^2} +4a^2x-2a^2 = 4a^2x+ \color{blue}{6ax^2} +2x^3-2a^2-2ax $$ |