Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2x-4}{3x}\cdot9\frac{x}{x-2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2x-4}{3x}\frac{9x}{x-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{18x}{3x}\end{aligned} $$ | |
① | Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 9 \cdot \frac{x}{x-2} & \xlongequal{\text{Step 1}} \frac{9}{\color{red}{1}} \cdot \frac{x}{x-2} \xlongequal{\text{Step 2}} \frac{ 9 \cdot x }{ 1 \cdot \left( x-2 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 9x }{ x-2 } \end{aligned} $$ |
② | Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x-4}{3x} \cdot \frac{9x}{x-2} & \xlongequal{\text{Step 1}} \frac{ 2 \cdot \color{blue}{ \left( x-2 \right) } }{ 3x } \cdot \frac{ 9x }{ 1 \cdot \color{blue}{ \left( x-2 \right) } } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 2 }{ 3x } \cdot \frac{ 9x }{ 1 } \xlongequal{\text{Step 3}} \frac{ 2 \cdot 9x }{ 3x \cdot 1 } \xlongequal{\text{Step 4}} \frac{ 18x }{ 3x } \end{aligned} $$ |