$$ \begin{aligned}\frac{2x^2-50}{x-5}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x+10\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x-5}$. $$ \begin{aligned} \frac{2x^2-50}{x-5} & =\frac{ \left( 2x+10 \right) \cdot \color{blue}{ \left( x-5 \right) }}{ 1 \cdot \color{blue}{ \left( x-5 \right) }} = \\[1ex] &= \frac{2x+10}{1} =2x+10 \end{aligned} $$ |