$$ \begin{aligned}\frac{2x^2+x}{2x^3+7x^2+3x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{x+3}\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{2x^2+x}$. $$ \begin{aligned} \frac{2x^2+x}{2x^3+7x^2+3x} & =\frac{ 1 \cdot \color{blue}{ \left( 2x^2+x \right) }}{ \left( x+3 \right) \cdot \color{blue}{ \left( 2x^2+x \right) }} = \\[1ex] &= \frac{1}{x+3} \end{aligned} $$ |