Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2x}{(x+2)(x+3)}-\frac{x-6}{(x+2)(x+4)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x}{x^2+3x+2x+6}-\frac{x-6}{x^2+4x+2x+8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2x}{x^2+5x+6}-\frac{x-6}{x^2+6x+8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{x^2+11x+18}{x^3+9x^2+26x+24} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{x+9}{x^2+7x+12}\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x+3\right) = x^2+3x+2x+6 $$ |
② | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x+4\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x+4\right) = x^2+4x+2x+8 $$ |
③ | Combine like terms: $$ x^2+ \color{blue}{3x} + \color{blue}{2x} +6 = x^2+ \color{blue}{5x} +6 $$ |
④ | Combine like terms: $$ x^2+ \color{blue}{4x} + \color{blue}{2x} +8 = x^2+ \color{blue}{6x} +8 $$ |
⑤ | To subtract raitonal expressions, both fractions must have the same denominator. |
⑥ | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x+2}$. $$ \begin{aligned} \frac{x^2+11x+18}{x^3+9x^2+26x+24} & =\frac{ \left( x+9 \right) \cdot \color{blue}{ \left( x+2 \right) }}{ \left( x^2+7x+12 \right) \cdot \color{blue}{ \left( x+2 \right) }} = \\[1ex] &= \frac{x+9}{x^2+7x+12} \end{aligned} $$ |