$$ \begin{aligned}\frac{25r^2-4}{5r^2-2r}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5r+2}{r}\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{5r-2}$. $$ \begin{aligned} \frac{25r^2-4}{5r^2-2r} & =\frac{ \left( 5r+2 \right) \cdot \color{blue}{ \left( 5r-2 \right) }}{ r \cdot \color{blue}{ \left( 5r-2 \right) }} = \\[1ex] &= \frac{5r+2}{r} \end{aligned} $$ |