Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{25}{4}}{\frac{1}{5}-\frac{4}{25}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{25}{4}}{\frac{1}{25}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{625}{4}\end{aligned} $$ | |
① | Combine like terms |
② | To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. $$ \begin{aligned} \frac{ \frac{25}{4} }{ \frac{\color{blue}{1}}{\color{blue}{25}} } & = \frac{25}{4} \cdot \frac{\color{blue}{25}}{\color{blue}{1}} = \\[1ex] &= \frac{625}{4} \end{aligned} $$ |