Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1-\frac{4}{x}}{1-\frac{16}{x^2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{x-4}{x}}{\frac{x^2-16}{x^2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^2}{x^2+4x}\end{aligned} $$ | |
① | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x-4}{x} }{ \frac{\color{blue}{x^2-16}}{\color{blue}{x^2}} } & \xlongequal{\text{Step 1}} \frac{x-4}{x} \cdot \frac{\color{blue}{x^2}}{\color{blue}{x^2-16}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 1 \cdot \color{blue}{ \left( x-4 \right) } }{ x } \cdot \frac{ x^2 }{ \left( x+4 \right) \cdot \color{blue}{ \left( x-4 \right) } } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 }{ x } \cdot \frac{ x^2 }{ x+4 } \xlongequal{\text{Step 4}} \frac{ 1 \cdot x^2 }{ x \cdot \left( x+4 \right) } \xlongequal{\text{Step 5}} \frac{ x^2 }{ x^2+4x } \end{aligned} $$ |