Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{(-2ab^2)^3}{20}ab^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-8a^3b^6}{20}ab^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(-\frac{8a^4b^6}{20})b^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{8a^4b^{10}}{20}\end{aligned} $$ | |
① | $$ \left( -2ab^2 \right)^3 = (-2)^3a^3 \left( b^2 \right)^3 = -8a^3b^6 $$ |
② | Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-8a^3b^6}{20} \cdot a & \xlongequal{\text{Step 1}} \frac{-8a^3b^6}{20} \cdot \frac{a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -8a^3b^6 \right) \cdot a }{ 20 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -8a^4b^6 }{ 20 } \end{aligned} $$ |
③ | Step 1: Write $ b^4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-8a^4b^6}{20} \cdot b^4 & \xlongequal{\text{Step 1}} \frac{-8a^4b^6}{20} \cdot \frac{b^4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -8a^4b^6 \right) \cdot b^4 }{ 20 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -8a^4b^{10} }{ 20 } \end{aligned} $$ |