Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{x+6}{x-2}-\frac{x+14}{x+7}}{x+70}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{x+70}{x^2+5x-14}}{x+70} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1}{x^2+5x-14}\end{aligned} $$ | |
① | To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{blue}{ x+70 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x+70}{x^2+5x-14} }{x+70} & \xlongequal{\text{Step 1}} \frac{x+70}{x^2+5x-14} \cdot \frac{\color{blue}{1}}{\color{blue}{x+70}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{x^2+5x-14} \cdot \frac{1}{\color{blue}{1}} \xlongequal{\text{Step 3}} \frac{ 1 \cdot 1 }{ \left( x^2+5x-14 \right) \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 1 }{ x^2+5x-14 } \end{aligned} $$ |