Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{x^2-25}{x-5}(x+3)\frac{x^2+7x+1}{x+4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x+5)(x+3)\frac{x^2+7x+1}{x+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+3x+5x+15)\frac{x^2+7x+1}{x+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^2+8x+15)\frac{x^2+7x+1}{x+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{x^4+15x^3+72x^2+113x+15}{x+4}\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x-5}$. $$ \begin{aligned} \frac{x^2-25}{x-5} & =\frac{ \left( x+5 \right) \cdot \color{blue}{ \left( x-5 \right) }}{ 1 \cdot \color{blue}{ \left( x-5 \right) }} = \\[1ex] &= \frac{x+5}{1} =x+5 \end{aligned} $$ |
② | Multiply each term of $ \left( \color{blue}{x+5}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x+5}\right) \cdot \left( x+3\right) = x^2+3x+5x+15 $$ |
③ | Combine like terms: $$ x^2+ \color{blue}{3x} + \color{blue}{5x} +15 = x^2+ \color{blue}{8x} +15 $$ |
④ | Step 1: Write $ x^2+8x+15 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x^2+8x+15 \cdot \frac{x^2+7x+1}{x+4} & \xlongequal{\text{Step 1}} \frac{x^2+8x+15}{\color{red}{1}} \cdot \frac{x^2+7x+1}{x+4} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( x^2+8x+15 \right) \cdot \left( x^2+7x+1 \right) }{ 1 \cdot \left( x+4 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^4+7x^3+x^2+8x^3+56x^2+8x+15x^2+105x+15 }{ x+4 } = \frac{x^4+15x^3+72x^2+113x+15}{x+4} \end{aligned} $$ |