Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{x}{7}-1}{x-7}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{x-7}{7}}{x-7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1}{7}\end{aligned} $$ | |
① | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{blue}{ x-7 } $ in first and second fraction. Step 3: Multiply numerators and denominators. $$ \begin{aligned} \frac{ \frac{x-7}{7} }{x-7} & \xlongequal{\text{Step 1}} \frac{x-7}{7} \cdot \frac{\color{blue}{1}}{\color{blue}{x-7}} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{7} \cdot \frac{1}{\color{blue}{1}} = \\[1ex] &= \frac{1}{7} \end{aligned} $$ |