Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{r}{s}-\frac{s}{r}}{\frac{1}{s}+\frac{1}{r}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{r^2-s^2}{rs}}{\frac{r+s}{rs}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{r^2-s^2}{r+s}\end{aligned} $$ | |
① | To subtract raitonal expressions, both fractions must have the same denominator. |
② | To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{red}{ rs } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{r^2-s^2}{rs} }{ \frac{\color{blue}{r+s}}{\color{blue}{rs}} } & \xlongequal{\text{Step 1}} \frac{r^2-s^2}{rs} \cdot \frac{\color{blue}{rs}}{\color{blue}{r+s}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{r^2-s^2}{\color{red}{1}} \cdot \frac{\color{red}{1}}{r+s} \xlongequal{\text{Step 3}} \frac{ \left( r^2-s^2 \right) \cdot 1 }{ 1 \cdot \left( r+s \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ r^2-s^2 }{ r+s } \end{aligned} $$ |