Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{m}{n}+1}{\frac{m}{n}-1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{m+n}{n}}{\frac{m-n}{n}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{m+n}{m-n}\end{aligned} $$ | |
① | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{red}{ n } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{m+n}{n} }{ \frac{\color{blue}{m-n}}{\color{blue}{n}} } & \xlongequal{\text{Step 1}} \frac{m+n}{n} \cdot \frac{\color{blue}{n}}{\color{blue}{m-n}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{m+n}{\color{red}{1}} \cdot \frac{\color{red}{1}}{m-n} \xlongequal{\text{Step 3}} \frac{ \left( m+n \right) \cdot 1 }{ 1 \cdot \left( m-n \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ m+n }{ m-n } \end{aligned} $$ |