Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{7+\frac{1}{x}}{2-\frac{1}{x}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{7x+1}{x}}{\frac{2x-1}{x}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{7x+1}{2x-1}\end{aligned} $$ | |
① | Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{red}{ x } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{7x+1}{x} }{ \frac{\color{blue}{2x-1}}{\color{blue}{x}} } & \xlongequal{\text{Step 1}} \frac{7x+1}{x} \cdot \frac{\color{blue}{x}}{\color{blue}{2x-1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{7x+1}{\color{red}{1}} \cdot \frac{\color{red}{1}}{2x-1} \xlongequal{\text{Step 3}} \frac{ \left( 7x+1 \right) \cdot 1 }{ 1 \cdot \left( 2x-1 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 7x+1 }{ 2x-1 } \end{aligned} $$ |