Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1-x^2}{1+y}\frac{1-y^2}{x+x^2}\cdot(1+\frac{x}{1-x})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{xy-x-y+1}{x}\cdot\frac{1}{-x+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{xy-x-y+1}{-x^2+x}\end{aligned} $$ | |
① | Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{1-x^2}{1+y} \cdot \frac{1-y^2}{x+x^2} & \xlongequal{\text{Step 1}} \frac{ \left( -x+1 \right) \cdot \color{blue}{ \left( x+1 \right) } }{ 1 \cdot \color{red}{ \left( y+1 \right) } } \cdot \frac{ \left( -y+1 \right) \cdot \color{red}{ \left( y+1 \right) } }{ x \cdot \color{blue}{ \left( x+1 \right) } } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ -x+1 }{ 1 } \cdot \frac{ -y+1 }{ x } \xlongequal{\text{Step 3}} \frac{ \left( -x+1 \right) \cdot \left( -y+1 \right) }{ 1 \cdot x } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ xy-x-y+1 }{ x } \end{aligned} $$ |
② | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{xy-x-y+1}{x} \cdot \frac{1}{-x+1} & \xlongequal{\text{Step 1}} \frac{ \left( xy-x-y+1 \right) \cdot 1 }{ x \cdot \left( -x+1 \right) } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ xy-x-y+1 }{ -x^2+x } \end{aligned} $$ |