Step 1:
X - intercept is:
$$ \color{blue}{ x_1 = 0 } $$To find the x-intercepts, we need to solve equation $ -\dfrac{1}{625}x^2 = 0 $. (use the quadratic equation solver to view a detailed explanation of how to solve the equation)
Step 2:
Y - intercept is point: $ y-inter=\left(0,~0\right) $
To find y - coordinate of y - intercept, we need to compute $ f(0) $. In this example we have:
$$ f(\color{blue}{0}) = -\frac{ 1 }{ 625 } \cdot \color{blue}{0}^2 + 0 \cdot \color{blue}{0} + 0 = 0$$Step 3:
Vertex is point: $V=\left(0,~0\right) $
To find the x - coordinate of the vertex we use formula:
$$ x = -\frac{b}{2a} $$In this example: $ a = -\frac{ 1 }{ 625 }, b = 0, c = 0 $. So, the x-coordinate of the vertex is:
$$ x = -\frac{b}{2a} = -\frac{ 0 }{ 2 \cdot \left( -\frac{ 1 }{ 625 } \right) } = 0 $$$$ y = f \left( 0 \right) = -\frac{ 1 }{ 625 } \left( 0 \right)^2 + 0 \cdot 0 ~ + ~ 0 = 0 $$Step 4:
Focus is point: $ F=\left(0,~-\dfrac{ 625 }{ 4 }\right)$
The x - coordinate of the focus is $ x = -\dfrac{b}{2a} $
The y - coordinate of the focus is $ y = \dfrac{1-b^2}{4a} + c $