Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 4551 | $$ \displaystyle\int \dfrac{5}{{x}^{3}}-\dfrac{{x}^{3}}{5}+\sqrt{x}\, \mathrm d x $$ | 1 |
| 4552 | $$ \displaystyle\int \dfrac{3{x}^{2}-4x}{2}{\cdot}{x}^{5}\, \mathrm d x $$ | 1 |
| 4553 | $$ \displaystyle\int \dfrac{3{x}^{2}-4x}{2{x}^{5}}\, \mathrm d x $$ | 1 |
| 4554 | $$ \displaystyle\int^{1}_{0.00001} -5956.2{x}^{2}+703384x+8\mathrm{e}+6\, \mathrm d x $$ | 1 |
| 4555 | $$ \displaystyle\int^{1}_{0.00001} -2.9562{x}^{2}+3.2927x+0.3366\, \mathrm d x $$ | 1 |
| 4556 | $$ \displaystyle\int^{100}_{0} {x}^{2}+3x-1\, \mathrm d x $$ | 1 |
| 4557 | $$ \displaystyle\int \dfrac{\cos\left(x\right)}{\sqrt{\sin\left(x\right){\cdot}\sin\left(x\right)-6{\cdot}\sin\left(x\right)}}\, \mathrm d x $$ | 1 |
| 4558 | $$ \displaystyle\int^{6}_{0} 3{x}^{2}-6x+3\, \mathrm d x $$ | 1 |
| 4559 | $$ \displaystyle\int {\left(\sin\left({\pi}{\cdot}x\right)\right)}^{2}{\cdot}{\left(\cos\left({\pi}{\cdot}x\right)\right)}^{5}\, \mathrm d x $$ | 1 |
| 4560 | $$ \displaystyle\int \dfrac{3}{{\left(2-x\right)}^{2}}\, \mathrm d x $$ | 1 |
| 4561 | $$ \displaystyle\int \dfrac{1}{\cos\left(x\right)}+\sin\left(x\right)\, \mathrm d x $$ | 1 |
| 4562 | $$ \displaystyle\int \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 1 |
| 4563 | $$ \displaystyle\int \dfrac{x}{x-2}\, \mathrm d x $$ | 1 |
| 4564 | $$ \displaystyle\int \dfrac{5}{{x}^{2}}\, \mathrm d x $$ | 1 |
| 4565 | $$ \displaystyle\int \dfrac{x}{x-4}\, \mathrm d x $$ | 1 |
| 4566 | $$ \displaystyle\int \dfrac{x}{{x}^{3}}\, \mathrm d x $$ | 1 |
| 4567 | $$ \displaystyle\int \cos\left(3x-2\right){\cdot}\cos\left(x+1\right)\, \mathrm d x $$ | 1 |
| 4568 | $$ \displaystyle\int {x}^{3}{\cdot}\cos\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 1 |
| 4569 | $$ \displaystyle\int \dfrac{{x}^{2}+2}{{x}^{2}}\, \mathrm d x $$ | 1 |
| 4570 | $$ \displaystyle\int \dfrac{sq{\cdot}\sqrt{t}{\cdot}\left({x}^{2}-25\right)}{x}\, \mathrm d x $$ | 1 |
| 4571 | $$ \displaystyle\int \dfrac{\sqrt{{x}^{2}-25}}{x}\, \mathrm d x $$ | 1 |
| 4572 | $$ \displaystyle\int^{\pi/2}_{0} \dfrac{1}{\sqrt{\cos\left(x\right)}}\, \mathrm d x $$ | 1 |
| 4573 | $$ \displaystyle\int^{1}_{----1} \sin\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 1 |
| 4574 | $$ \displaystyle\int \dfrac{6{x}^{2}-2}{{x}^{3}-x}\, \mathrm d x $$ | 1 |
| 4575 | $$ \displaystyle\int \sqrt{\sin\left(x\right)+1}\, \mathrm d x $$ | 1 |
| 4576 | $$ \displaystyle\int^{3}_{0} \ln\left(3-x\right)\, \mathrm d x $$ | 1 |
| 4577 | $$ \displaystyle\int^{4}_{0} \ln\left(3-x\right)\, \mathrm d x $$ | 1 |
| 4578 | $$ \displaystyle\int^{1}_{0} \ln\left(3-x\right)\, \mathrm d x $$ | 1 |
| 4579 | $$ \displaystyle\int \ln\left(3-x\right)\, \mathrm d x $$ | 1 |
| 4580 | $$ \displaystyle\int 5000-\left(2500-25x\right)\, \mathrm d x $$ | 1 |
| 4581 | $$ \displaystyle\int^{3}_{0} 5000-\left(2500-25x\right)\, \mathrm d x $$ | 1 |
| 4582 | $$ \displaystyle\int^{3}_{0} 5000-\left(2500-25x\right){\cdot}10\, \mathrm d x $$ | 1 |
| 4583 | $$ \displaystyle\int^{2}_{0} 5000-\left(2500-25x\right){\cdot}10\, \mathrm d x $$ | 1 |
| 4584 | $$ \displaystyle\int^{2}_{0} 5000-\left(2500-2x\right){\cdot}10\, \mathrm d x $$ | 1 |
| 4585 | $$ \displaystyle\int^{2}_{0} 50000-\left(2500-2x\right){\cdot}10\, \mathrm d x $$ | 1 |
| 4586 | $$ \displaystyle\int^{2}_{0} \dfrac{50000-\left(2500-2x\right){\cdot}10}{2500-2x}\, \mathrm d x $$ | 1 |
| 4587 | $$ \displaystyle\int^{10}_{0} \dfrac{50000-\left(2500-2x\right){\cdot}10}{2500-2x}\, \mathrm d x $$ | 1 |
| 4588 | $$ \displaystyle\int^{0.0001}_{0} \dfrac{50000-\left(2500-2x\right){\cdot}10}{2500-2x}\, \mathrm d x $$ | 1 |
| 4589 | $$ \displaystyle\int^{1}_{0} \dfrac{50000-\left(2500-2x\right){\cdot}10}{2500-2x}\, \mathrm d x $$ | 1 |
| 4590 | $$ \displaystyle\int^{1}_{0} 50000-\left(2500-2x\right){\cdot}10\, \mathrm d x $$ | 1 |
| 4591 | $$ \displaystyle\int^{0.0001}_{0} 50000-\left(2500-2x\right){\cdot}10\, \mathrm d x $$ | 1 |
| 4592 | $$ \displaystyle\int^{0.0000001}_{0} 50000-\left(2500-2x\right){\cdot}10\, \mathrm d x $$ | 1 |
| 4593 | $$ \displaystyle\int^{0.0}_{0} 50000-\left(2500-2x\right){\cdot}10\, \mathrm d x $$ | 1 |
| 4594 | $$ \displaystyle\int^{0.2}_{0} 50000-\left(2500-2x\right){\cdot}10\, \mathrm d x $$ | 1 |
| 4595 | $$ \displaystyle\int^{0.01}_{0} 50000-\left(2500-2x\right){\cdot}10\, \mathrm d x $$ | 1 |
| 4596 | $$ \displaystyle\int^{3}_{0} \dfrac{50000-\left(2500-2x\right){\cdot}10}{2500-2x}\, \mathrm d x $$ | 1 |
| 4597 | $$ \displaystyle\int {x}^{\frac{1}{2}}{\cdot}{\left(x-1\right)}^{\frac{1}{2}}\, \mathrm d x $$ | 1 |
| 4598 | $$ \displaystyle\int {x}^{\frac{1}{2}}{\cdot}{\left(x+1\right)}^{\frac{1}{2}}\, \mathrm d x $$ | 1 |
| 4599 | $$ \displaystyle\int \dfrac{1}{{x}^{2}-3}\, \mathrm d x $$ | 1 |
| 4600 | $$ \displaystyle\int \dfrac{1}{2x-1}\, \mathrm d x $$ | 1 |