Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1901 | $$ $$ | 1 |
1902 | $$ $$ | 1 |
1903 | $$ $$ | 1 |
1904 | $$ $$ | 1 |
1905 | $$ $$ | 1 |
1906 | $$ $$ | 1 |
1907 | $$ $$ | 1 |
1908 | $$ \displaystyle\int \dfrac{{x}^{2}+2x+3}{\sqrt{4x-{x}^{2}}}\, \mathrm d x $$ | 1 |
1909 | $$ \displaystyle\int {\mathrm{e}}^{-2x}{\cdot}x\, \mathrm d x $$ | 1 |
1910 | $$ \displaystyle\int {\left(\cos\left(x\right)\right)}^{3}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 1 |
1911 | $$ \displaystyle\int \cos\left(2x\right){\cdot}{\left(\sin\left(2x\right)\right)}^{5}\, \mathrm d x $$ | 1 |
1912 | $$ $$ | 1 |
1913 | $$ $$ | 1 |
1914 | $$ $$ | 1 |
1915 | $$ $$ | 1 |
1916 | $$ $$ | 1 |
1917 | $$ $$ | 1 |
1918 | $$ $$ | 1 |
1919 | $$ $$ | 1 |
1920 | $$ $$ | 1 |
1921 | $$ $$ | 1 |
1922 | $$ $$ | 1 |
1923 | $$ $$ | 1 |
1924 | $$ $$ | 1 |
1925 | $$ \displaystyle\int^{1}_{0} \sqrt{1-{x}^{2}}\, \mathrm d x $$ | 1 |
1926 | $$ \displaystyle\int^{2}_{0} \dfrac{1}{\sqrt{1+{x}^{2}}}\, \mathrm d x $$ | 1 |
1927 | $$ \displaystyle\int^{1}_{0} \sqrt{\dfrac{1+x}{1-x}}\, \mathrm d x $$ | 1 |
1928 | $$ \displaystyle\int^{1}_{0} \ln\left(1+x\right)\, \mathrm d x $$ | 1 |
1929 | $$ \displaystyle\int^{1}_{0} \ln\left(1-x\right)\, \mathrm d x $$ | 1 |
1930 | $$ \displaystyle\int^{1}_{0} \dfrac{1}{\sqrt{1+x}}\, \mathrm d x $$ | 1 |
1931 | $$ \displaystyle\int^{1}_{0} \dfrac{\tan\left({x}^{2}\right)}{2}{\cdot}x\, \mathrm d x $$ | 1 |
1932 | $$ \displaystyle\int^{1}_{0} xs{\cdot}{\mathrm{e}}^{2}\, \mathrm d x $$ | 1 |
1933 | $$ \displaystyle\int^{\pi/4}_{0} 2{\pi}{\cdot}x{\cdot}\cos\left(x\right){\cdot}\sqrt{1+{x}^{2}}\, \mathrm d x $$ | 1 |
1934 | $$ \displaystyle\int {x}^{3}{\cdot}\sqrt{81+{x}^{2}}\, \mathrm d x $$ | 1 |
1935 | $$ \displaystyle\int^{\infty}_{0} \dfrac{{x}^{\frac{-1}{2}}}{x+1}\, \mathrm d x $$ | 1 |
1936 | $$ \displaystyle\int {\left({x}^{4}-1\right)}^{\frac{1}{4}}\, \mathrm d x $$ | 1 |
1937 | $$ \displaystyle\int^{2}_{1} 6{\cdot}\ln\left(2x\right)\, \mathrm d x $$ | 1 |
1938 | $$ \int {4888888888888888888888888888}-{1000000000001100000} \, d\,x $$ | 1 |
1939 | $$ \int \frac{{{1}+{2}{x}}}{{{1}-{x}}} \, d\,x $$ | 1 |
1940 | $$ \int \frac{{{3}+{2}{x}}}{{{3}-{x}}} \, d\,x $$ | 1 |
1941 | $$ \int \frac{{{5}+{2}{x}}}{{{5}-{x}}} \, d\,x $$ | 1 |
1942 | $$ \int \frac{{{4}+{2}{x}}}{{{4}-{x}}} \, d\,x $$ | 1 |
1943 | $$ \int^{0*00125}_{0} \frac{{\frac{{1}}{{10}}+{2}{x}}}{{\frac{{1}}{{10}}-{x}}} \, d\,x $$ | 1 |
1944 | $$ \int^{125/10000}_{0} \frac{{\frac{{1}}{{10}}+{2}{x}}}{{\frac{{1}}{{10}}-{x}}} \, d\,x $$ | 1 |
1945 | $$ \int \frac{{\frac{{1}}{{10}}+{2}{x}}}{{\frac{{1}}{{10}}-{x}}} \, d\,x $$ | 1 |
1946 | $$ \displaystyle\int^{2.05136}_{0} {\left(2.61793+1.16771{\cdot}\sin\left(1.20382x-1.86384\right)\right)}^{2}\, \mathrm d x $$ | 1 |
1947 | $$ \displaystyle\int {x}^{2}{\cdot}{\left({x}^{2}+5\right)}^{\frac{1}{7}}\, \mathrm d x $$ | 1 |
1948 | $$ \int^{6}_{3} {5}{x}-{3} \, d\,x $$ | 1 |
1949 | $$ $$ | 1 |
1950 | $$ \displaystyle\int^{1}_{0} {x}^{4}{\cdot}{\mathrm{e}}^{x}\, \mathrm d x $$ | 1 |