Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 1351 | $$ \displaystyle\int^{\pi/2}_{0} \cos\left(1-\tan\left(\color{orangered}{\square}\right)\right)\, \mathrm d x $$ | 2 |
| 1352 | $$ \displaystyle\int \ln\left(x-1\right)\, \mathrm d x $$ | 2 |
| 1353 | $$ \displaystyle\int \dfrac{1}{x{\cdot}\ln\left(x\right)}\, \mathrm d x $$ | 2 |
| 1354 | $$ \displaystyle\int^{5/9}_{0} \sqrt{1-\dfrac{81x}{4}}\, \mathrm d x $$ | 2 |
| 1355 | $$ \displaystyle\int^{5/9}_{0} \sqrt{1-\dfrac{81}{4}{\cdot}x}\, \mathrm d x $$ | 2 |
| 1356 | $$ \displaystyle\int^{5/9}_{0} \sqrt{1+\dfrac{81}{4}{\cdot}x}\, \mathrm d x $$ | 2 |
| 1357 | $$ \displaystyle\int^{4}_{0} x{\cdot}\sin\left(\dfrac{{\pi}{\cdot}x}{4}\right)\, \mathrm d x $$ | 2 |
| 1358 | $$ \displaystyle\int^{e}_{1} \left(1-\dfrac{\ln\left(x\right)}{x}\right){\cdot}\sqrt{{x}^{2}-2x+2}\, \mathrm d x $$ | 2 |
| 1359 | $$ $$ | 2 |
| 1360 | $$ \displaystyle\int 2{x}^{-1}\, \mathrm d x $$ | 2 |
| 1361 | $$ $$ | 2 |
| 1362 | $$ $$ | 2 |
| 1363 | $$ $$ | 2 |
| 1364 | $$ $$ | 2 |
| 1365 | $$ $$ | 2 |
| 1366 | $$ $$ | 2 |
| 1367 | $$ $$ | 2 |
| 1368 | $$ \displaystyle\int \dfrac{1}{x+5}\, \mathrm d x $$ | 2 |
| 1369 | $$ \displaystyle\int^{\infty}_{0} {\mathrm{e}}^{-x}{\cdot}\cos\left(x\right)\, \mathrm d x $$ | 2 |
| 1370 | $$ \displaystyle\int \dfrac{1}{{x}^{\frac{3}{2}}+8}\, \mathrm d x $$ | 2 |
| 1371 | $$ \displaystyle\int \dfrac{{x}^{\frac{1}{2}}+1}{{x}^{\frac{3}{2}}+8}\, \mathrm d x $$ | 2 |
| 1372 | $$ \displaystyle\int \dfrac{1}{x{\cdot}{\left(\ln\left(x\right)\right)}^{2}}\, \mathrm d x $$ | 2 |
| 1373 | $$ \displaystyle\int^{1}_{-1} \dfrac{1}{2+\sin\left(x\right)}\, \mathrm d x $$ | 2 |
| 1374 | $$ \displaystyle\int \dfrac{1}{5}-2x\, \mathrm d x $$ | 2 |
| 1375 | $$ \displaystyle\int^{2\pi}_{0} \cos\left(x\right){\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
| 1376 | $$ \displaystyle\int^{\pi}_{0} \cos\left(x\right){\cdot}\sin\left(x\right)\, \mathrm d x $$ | 2 |
| 1377 | $$ $$ | 2 |
| 1378 | $$ $$ | 2 |
| 1379 | $$ \displaystyle\int \dfrac{8{a}^{3}}{\dfrac{2}{a}{\cdot}{\left({x}^{2}-\dfrac{60}{50}\right)}^{2}+4{a}^{2}}+0.28\, \mathrm d x $$ | 2 |
| 1380 | $$ \displaystyle\int^{3.3431}_{0} -0.4167{x}^{2}-x+8\, \mathrm d x $$ | 2 |
| 1381 | $$ \displaystyle\int^{2}_{0} 4{x}^{2}-{x}^{4}\, \mathrm d x $$ | 2 |
| 1382 | $$ \displaystyle\int^{4}_{0} 2{\cdot}\left(0.5x-\sqrt{x}\right){\cdot}x\, \mathrm d x $$ | 2 |
| 1383 | $$ \displaystyle\int^{1}_{0} {\left(1-{x}^{2}\right)}^{2}-{\left(1-\sqrt{x}\right)}^{2}\, \mathrm d x $$ | 2 |
| 1384 | $$ \displaystyle\int^{1}_{0} 2x{\cdot}\left(\sqrt{x}-{x}^{2}\right)\, \mathrm d x $$ | 2 |
| 1385 | $$ \displaystyle\int^{1}_{0} 2x{\cdot}\left({x}^{2}-\sqrt{x}\right)\, \mathrm d x $$ | 2 |
| 1386 | $$ \displaystyle\int^{1}_{0} 2x{\cdot}\left({x}^{2}-\sqrt{x}\right){\cdot}\left(\sqrt{x}-{x}^{2}\right)\, \mathrm d x $$ | 2 |
| 1387 | $$ \displaystyle\int^{1}_{0} 2x{\cdot}\left(\sqrt{x}-{x}^{2}\right)\, \mathrm d x $$ | 2 |
| 1388 | $$ \displaystyle\int^{1}_{0} 2{\cdot}{\left(\sqrt{x}-{x}^{2}\right)}^{2}\, \mathrm d x $$ | 2 |
| 1389 | $$ \displaystyle\int^{1}_{0} 2{\cdot}\left(1-x\right){\cdot}\left(\sqrt{x}-{x}^{2}\right)\, \mathrm d x $$ | 2 |
| 1390 | $$ \displaystyle\int {x}^{3}{\cdot}\sqrt{5{x}^{2}+4}\, \mathrm d x $$ | 2 |
| 1391 | $$ \displaystyle\int {x}^{5}{\cdot}\sqrt{1+{x}^{2}}\, \mathrm d x $$ | 2 |
| 1392 | $$ $$ | 2 |
| 1393 | $$ \displaystyle\int {\mathrm{e}}^{-x}\, \mathrm d x $$ | 2 |
| 1394 | $$ $$ | 2 |
| 1395 | $$ \displaystyle\int \left({x}^{2}-4\right){\cdot}\left(2x+3\right)\, \mathrm d x $$ | 2 |
| 1396 | $$ \displaystyle\int 1+x\, \mathrm d x $$ | 2 |
| 1397 | $$ \displaystyle\int \dfrac{{x}^{3}}{\sqrt{1-{x}^{2}}}\, \mathrm d x $$ | 2 |
| 1398 | $$ \displaystyle\int^{\infty}_{1} \dfrac{1}{{x}^{5}}\, \mathrm d x $$ | 2 |
| 1399 | $$ \displaystyle\int^{2}_{0} x{\cdot}\left(1-x\right)\, \mathrm d x $$ | 2 |
| 1400 | $$ \displaystyle\int^{2}_{0} x{\cdot}\left(4-3x\right)\, \mathrm d x $$ | 2 |