Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1201 | $$ \displaystyle\int \dfrac{x}{{\left(\sin\left(x\right)\right)}^{5}}\, \mathrm d x $$ | 1 |
1202 | $$ $$ | 1 |
1203 | $$ $$ | 1 |
1204 | $$ \displaystyle\int 2{{\pi}}^{-2}{\cdot}\ln\left(x\right){\cdot}{\left(\left(1+x\right){\cdot}\left(1-x\right)\right)}^{-1}\, \mathrm d x $$ | 1 |
1205 | $$ $$ | 1 |
1206 | $$ $$ | 1 |
1207 | $$ \int^{5}_{1} \frac{\sqrt{{{x}^{{2}}-{1}}}}{{4}}{x} \, d\,x $$ | 1 |
1208 | $$ $$ | 1 |
1209 | $$ $$ | 1 |
1210 | $$ $$ | 1 |
1211 | $$ $$ | 1 |
1212 | $$ $$ | 1 |
1213 | $$ $$ | 1 |
1214 | $$ $$ | 1 |
1215 | $$ \int^{5}_{1} \frac{\sqrt{{{x}^{{2}}-{1}}}}{{{4}{x}}} \, d\,x $$ | 1 |
1216 | $$ \displaystyle\int^{0.69}_{0} {\mathrm{e}}^{x}{\cdot}\sqrt{{\mathrm{e}}^{x}+4}\, \mathrm d x $$ | 1 |
1217 | $$ $$ | 1 |
1218 | $$ $$ | 1 |
1219 | $$ $$ | 1 |
1220 | $$ $$ | 1 |
1221 | $$ $$ | 1 |
1222 | $$ $$ | 1 |
1223 | $$ $$ | 1 |
1224 | $$ $$ | 1 |
1225 | $$ $$ | 1 |
1226 | $$ \displaystyle\int^{4}_{0} {x}^{\frac{1}{2}}+4-4\, \mathrm d x $$ | 1 |
1227 | $$ \displaystyle\int^{\pi/2}_{\pi/4} \csc\left(x\right)\, \mathrm d x $$ | 1 |
1228 | $$ $$ | 1 |
1229 | $$ $$ | 1 |
1230 | $$ \displaystyle\int 2{\cdot}\cos\left(x\right){\cdot}x{\cdot}\cos\left(3\right){\cdot}x\, \mathrm d x $$ | 1 |
1231 | $$ $$ | 1 |
1232 | $$ $$ | 1 |
1233 | $$ $$ | 1 |
1234 | $$ $$ | 1 |
1235 | $$ \displaystyle\int^{3.52}_{0} \dfrac{1}{2{\pi}}{\cdot}{\left(3.88{\cdot}\sin\left(x-0.414\right)+1.56{\mathrm{e}}^{\frac{-x}{0.44}}\right)}^{2}\, \mathrm d x $$ | 1 |
1236 | $$ $$ | 1 |
1237 | $$ $$ | 1 |
1238 | $$ $$ | 1 |
1239 | $$ $$ | 1 |
1240 | $$ $$ | 1 |
1241 | $$ $$ | 1 |
1242 | $$ $$ | 1 |
1243 | $$ $$ | 1 |
1244 | $$ $$ | 1 |
1245 | $$ $$ | 1 |
1246 | $$ \displaystyle\int \left({x}^{2}+x\right){\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 1 |
1247 | $$ $$ | 1 |
1248 | $$ $$ | 1 |
1249 | $$ $$ | 1 |
1250 | $$ $$ | 1 |