Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
951 | $$ $$ | 1 |
952 | $$ \displaystyle\int {\pi}{\cdot}{\left(4{\cdot}\sin\left(x\right)+6\right)}^{2}-{6}^{2}\, \mathrm d x $$ | 1 |
953 | $$ $$ | 1 |
954 | $$ $$ | 1 |
955 | $$ $$ | 1 |
956 | $$ $$ | 1 |
957 | $$ \displaystyle\int \dfrac{{\mathrm{e}}^{x}}{\sqrt{{\mathrm{e}}^{2x}-1}}\, \mathrm d x $$ | 1 |
958 | $$ $$ | 1 |
959 | $$ $$ | 1 |
960 | $$ $$ | 1 |
961 | $$ $$ | 1 |
962 | $$ $$ | 1 |
963 | $$ $$ | 1 |
964 | $$ \displaystyle\int {\left(\sin\left(x\right)\right)}^{-1}\, \mathrm d x $$ | 1 |
965 | $$ \displaystyle\int^{3}_{1} 2{\pi}{\cdot}\sqrt{1+{\left(\dfrac{{x}^{5}}{4}+{x}^{7}\right)}^{2}}{\cdot}x\, \mathrm d x $$ | 1 |
966 | $$ $$ | 1 |
967 | $$ $$ | 1 |
968 | $$ $$ | 1 |
969 | $$ $$ | 1 |
970 | $$ $$ | 1 |
971 | $$ $$ | 1 |
972 | $$ \displaystyle\int {\left(4{\cdot}\sin\left(x\right)+6\right)}^{2}-{6}^{2}\, \mathrm d x $$ | 1 |
973 | $$ $$ | 1 |
974 | $$ $$ | 1 |
975 | $$ \displaystyle\int \sqrt{x}\, \mathrm d x $$ | 1 |
976 | $$ $$ | 1 |
977 | $$ $$ | 1 |
978 | $$ $$ | 1 |
979 | $$ $$ | 1 |
980 | $$ $$ | 1 |
981 | $$ \displaystyle\int 0.1\, \mathrm d x $$ | 1 |
982 | $$ $$ | 1 |
983 | $$ $$ | 1 |
984 | $$ \displaystyle\int^{4}_{5/2} \sqrt{1+{\left(\dfrac{-\left(x-\dfrac{5}{2}\right)}{{\left({\left(\dfrac{3}{2}\right)}^{2}-{\left(x-\dfrac{5}{2}\right)}^{2}\right)}^{\frac{1}{2}}}\right)}^{2}}\, \mathrm d x $$ | 1 |
985 | $$ \int^{-4}_{-11} \sqrt{{{49}-{\left({x}+{4}\right)}^{{2}}}} \, d\,x $$ | 1 |
986 | $$ $$ | 1 |
987 | $$ $$ | 1 |
988 | $$ $$ | 1 |
989 | $$ $$ | 1 |
990 | $$ \displaystyle\int^{3}_{2} 5{\cdot}\left({\mathrm{e}}^{5t}+{\mathrm{e}}^{-3t}\right)\, \mathrm d x $$ | 1 |
991 | $$ $$ | 1 |
992 | $$ $$ | 1 |
993 | $$ $$ | 1 |
994 | $$ \displaystyle\int 0\, \mathrm d x $$ | 1 |
995 | $$ $$ | 1 |
996 | $$ $$ | 1 |
997 | $$ $$ | 1 |
998 | $$ $$ | 1 |
999 | $$ $$ | 1 |
1000 | $$ $$ | 1 |