Ellipse – Solved Problems Database
All the problems and solutions shown below were generated using the Ellipse Calculator.
ID |
Problem |
Count |
151 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - \frac{ 17 }{ 10 } \right)^2}{ 6 } + \dfrac{ y^2}{ 15 } = 1 $$ | 2 |
152 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - \frac{ 7 }{ 2 } \right)^2}{ 4 } + \dfrac{ \left( y + \frac{ 5 }{ 2 } \right)^2}{ 2 } = 1 $$ | 2 |
153 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 1 } + \dfrac{ \left( y + 3 \right)^2}{ 4 } = 1 $$ | 2 |
154 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 10 \right)^2}{ \frac{ 11 }{ 2 } } + \dfrac{ \left( y - 1 \right)^2}{ 3 } = 1 $$ | 2 |
155 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 36 } + \dfrac{ y^2}{ 4 } = 1 $$ | 2 |
156 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 36 } = 1 $$ | 2 |
157 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 2 |
158 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 4 \left( x - 3 \right)^2}{ 12 } + \dfrac{ 8 \left( y + 6 \right)^2}{ 20 } = 1 $$ | 2 |
159 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 9 } = 1 $$ | 2 |
160 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 4 } + \dfrac{ \left( y - 4 \right)^2}{ 9 } = 1 $$ | 2 |
161 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 18 } + \dfrac{ \left( y - 2 \right)^2}{ 81 } = 1 $$ | 2 |
162 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + \frac{ 21 }{ 2 } \right)^2}{ 1 } + \dfrac{ \left( y + 1 \right)^2}{ \frac{ 1 }{ 100 } } = 1 $$ | 2 |
163 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 16 x^2}{ 1 } + \dfrac{ y^2}{ 1 } = 1 $$ | 2 |
164 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 36 } = 1 $$ | 2 |
165 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 36 } + \dfrac{ \left( y + 3 \right)^2}{ 4 } = 1 $$ | 2 |
166 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ x^2 + 6y^2 = 18 $$ | 2 |
167 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 7 \right)^2}{ 1 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 2 |
168 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 10 \right)^2}{ 1600 } + \dfrac{ \left( y - 20 \right)^2}{ 400 } = 1 $$ | 2 |
169 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 81 } + \dfrac{ \left( y + 6 \right)^2}{ 49 } = 1 $$ | 2 |
170 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 9 } + \dfrac{ \left( y + 4 \right)^2}{ 4 } = 1 $$ | 2 |
171 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 100 } + \dfrac{ y^2}{ \frac{ 121 }{ 4 } } = 1 $$ | 2 |
172 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 10 } + \dfrac{ \left( y + 8 \right)^2}{ 15 } = 1 $$ | 2 |
173 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 2 |
174 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 2 |
175 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ \frac{ 1 }{ 2 } } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 2 |
176 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ \frac{ 1 }{ 10 } } + \dfrac{ \left( y + 1 \right)^2}{ \frac{ 1 }{ 5 } } = 1 $$ | 2 |
177 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 8640.632 } + \dfrac{ y^2}{ 8637.8436 } = 1 $$ | 2 |
178 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 3 } = 1 $$ | 2 |
179 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 9 \left( x - 1 \right)^2}{ 225 } + \dfrac{ 25 \left( y + 2 \right)^2}{ 225 } = 1 $$ | 2 |
180 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 3x^2 + 4y^2 = 1 $$ | 2 |
181 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ y^2}{ 1 } = 1 $$ | 2 |
182 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y + 1 \right)^2}{ 3 } = 1 $$ | 2 |
183 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + \frac{ 1 }{ 5 } \right)^2}{ 17.1395 } + \dfrac{ \left( y + \frac{ 1 }{ 10 } \right)^2}{ 7.3495 } = 1 $$ | 2 |
184 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 1 } = 1 $$ | 2 |
185 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 25 } + \dfrac{ \left( y - 4 \right)^2}{ 4 } = 1 $$ | 2 |
186 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 64 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 2 |
187 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1 } + \dfrac{ y^2}{ 4 } = 1 $$ | 2 |
188 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 780 } + \dfrac{ y^2}{ 450 } = 1 $$ | 2 |
189 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 16 } + \dfrac{ \left( y - 1 \right)^2}{ 49 } = 1 $$ | 2 |
190 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 25 } = 1 $$ | 2 |
191 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 3 } = 1 $$ | 2 |
192 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 154 } + \dfrac{ y^2}{ 62 } = 1 $$ | 2 |
193 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 10 } + \dfrac{ \left( y + 2 \right)^2}{ 4 } = 1 $$ | 2 |
194 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ \frac{ 191 }{ 2 } } + \dfrac{ \left( y - 1 \right)^2}{ 75 } = 1 $$ | 2 |
195 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 64 } + \dfrac{ y^2}{ 100 } = 1 $$ | 2 |
196 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 5 } + \dfrac{ y^2}{ 3 } = 1 $$ | 2 |
197 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 40 \right)^2}{ 900 } + \dfrac{ \left( y - 40 \right)^2}{ 1600 } = 1 $$ | 2 |
198 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 20x^2 + 25y^2 = 1 $$ | 2 |
199 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 5 }{ 2 } } + \dfrac{ y^2}{ 2 } = 1 $$ | 2 |
200 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 8x^2 + \frac{ 37 }{ 10 }y^2 = 1 $$ | 2 |