Derivative
(the database of solved problems)
All the problems and solutions shown below were generated using the Derivative Calculator.
| ID |
Problem |
Count |
| 4851 | $ \dfrac{-1}{2}{\cdot}{3}^{x-1}+3 $ | 1 |
| 4852 | $ {\left(2x+30\right)}^{\frac{1}{2}} $ | 1 |
| 4853 | $ fx $ | 1 |
| 4854 | $ \, x \, $ | 1 |
| 4855 | $ \, x \, $ | 1 |
| 4856 | $ \, x \, $ | 1 |
| 4857 | $ \, x \, $ | 1 |
| 4858 | $ \, x \, $ | 1 |
| 4859 | $ \, x \, $ | 1 |
| 4860 | $ \, x \, $ | 1 |
| 4861 | $ \left(10x-9\right){\cdot}\cos\left(x\right) $ | 1 |
| 4862 | $ -6{t}^{5}-4{t}^{4}+2 $ | 1 |
| 4863 | $ \, x \, $ | 1 |
| 4864 | $ \, x \, $ | 1 |
| 4865 | $ \dfrac{300-3x}{2} $ | 1 |
| 4866 | $ 70-s $ | 1 |
| 4867 | $ 4{\cdot}\ln\left(x\right)+2{\cdot}\cos\left(x\right) $ | 1 |
| 4868 | $ \dfrac{5{x}^{2}}{\sqrt{3}}+5xwz $ | 1 |
| 4869 | $ \sqrt{\dfrac{400x}{3}} $ | 1 |
| 4870 | $ {\mathrm{e}}^{x}{\cdot}i{\cdot}n{\cdot}\left(3{x}^{3}+7x\right) $ | 1 |
| 4871 | $ {\mathrm{e}}^{x}{\cdot}\ln\left(3{x}^{3}+7x\right) $ | 1 |
| 4872 | $ \dfrac{x{\cdot}{\mathrm{e}}^{x}}{6}+\dfrac{2x}{6} $ | 1 |
| 4873 | $ {x}^{2}-3x $ | 1 |
| 4874 | $ \dfrac{2x}{1}-2x $ | 1 |
| 4875 | $ \, x \, $ | 1 |
| 4876 | $ 4-5x+{x}^{2} $ | 1 |
| 4877 | $ \, x \, $ | 1 |
| 4878 | $ fx $ | 1 |
| 4879 | $ 5-{\left(10-x\right)}^{0.5} $ | 1 |
| 4880 | $ 4{\cdot}\ln\left(\dfrac{{\left(1+{x}^{3}\right)}^{1}}{2}\right) $ | 1 |
| 4881 | $ 5x+9 $ | 1 |
| 4882 | $ 5-3x $ | 1 |
| 4883 | $ 36t-16{t}^{2} $ | 1 |
| 4884 | $ \dfrac{7}{x+2} $ | 1 |
| 4885 | $ \dfrac{x}{x-2} $ | 1 |
| 4886 | $ {x}^{2}+6x $ | 1 |
| 4887 | $ 6{x}^{2}-5 $ | 1 |
| 4888 | $ 50t-0.83{t}^{2} $ | 1 |
| 4889 | $ -0.15{x}^{2}+12x $ | 1 |
| 4890 | $ {\mathrm{e}}^{3}{\cdot}x{\cdot}\sqrt{4-\cos\left({\pi}\right){\cdot}x} $ | 1 |
| 4891 | $ \dfrac{x}{x-1} $ | 1 |
| 4892 | $ \dfrac{2{{\pi}}^{-2}}{3} $ | 1 |
| 4893 | $ \ln\left(\sec\left(5x\right)+\tan\left(5x\right)\right) $ | 1 |
| 4894 | $ \dfrac{2{t}^{2}+12t}{{\left(2t+6\right)}^{2}} $ | 1 |
| 4895 | $ \dfrac{x}{1-\ln\left(x-9\right)} $ | 1 |
| 4896 | $ \dfrac{300}{1+10{\mathrm{e}}^{-3t}}-27.275 $ | 1 |
| 4897 | $ \dfrac{8}{{x}^{2}}+2x-4 $ | 1 |
| 4898 | $ \, x \, $ | 1 |
| 4899 | $ \, x \, $ | 1 |
| 4900 | $ \, x \, $ | 1 |