Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
4751 | $ -0.2{\cdot}\ln\left(\dfrac{900}{x}\right) $ | 1 |
4752 | $ \, x \, $ | 1 |
4753 | $ \, x \, $ | 1 |
4754 | $ \, x \, $ | 1 |
4755 | $ \dfrac{2{t}^{2}+12t}{{\left(2t+6\right)}^{2}} $ | 1 |
4756 | $ {x}^{\ln\left(x\right)} $ | 1 |
4757 | $ \, x \, $ | 1 |
4758 | $ \, x \, $ | 1 |
4759 | $ \dfrac{x}{4}+\dfrac{x}{4}{\cdot}\ln\left(\dfrac{4}{x}\right) $ | 1 |
4760 | $ \, x \, $ | 1 |
4761 | $ \dfrac{3{x}^{3}}{6x-6} $ | 1 |
4762 | $ 1 $ | 1 |
4763 | $ {7}^{2{x}^{2}+x} $ | 1 |
4764 | $ \, x \, $ | 1 |
4765 | $ \, x \, $ | 1 |
4766 | $ \, x \, $ | 1 |
4767 | $ y $ | 1 |
4768 | $ \, x \, $ | 1 |
4769 | $ \dfrac{x}{1-\ln\left(x-9\right)} $ | 1 |
4770 | $ \, x \, $ | 1 |
4771 | $ \, x \, $ | 1 |
4772 | $ {x}^{\frac{5}{2}}+4{x}^{-\frac{1}{3}}+\mathrm{e}{\cdot}x-\dfrac{1}{\ln\left(2\right)} $ | 1 |
4773 | $ {0.5}^{1-n} $ | 1 |
4774 | $ \, x \, $ | 1 |
4775 | $ 1 $ | 1 |
4776 | $ \, x \, $ | 1 |
4777 | $ {a}^{0.5}{\cdot}\left(100-p\right) $ | 1 |
4778 | $ \, x \, $ | 1 |
4779 | $ \, x \, $ | 1 |
4780 | $ {\left(x+4\right)}^{2}{\cdot}\sqrt{x-3} $ | 1 |
4781 | $ {\left(x-0.1\right)}^{3} $ | 1 |
4782 | $ \dfrac{x+1}{{x}^{2}} $ | 1 |
4783 | $ \, x \, $ | 1 |
4784 | $ {x}^{\frac{5}{2}}+4{x}^{-\frac{1}{3}}+\mathrm{e}{\cdot}{\pi}-\dfrac{1}{\ln\left(2\right)} $ | 1 |
4785 | $ \, x \, $ | 1 |
4786 | $ {x}^{5}-25{x}^{4}+35 $ | 1 |
4787 | $ 1 $ | 1 |
4788 | $ \left(20-16{x}^{3}\right){\cdot}\sec\left({x}^{4}-5x\right){\cdot}\tan\left({x}^{4}-5x\right){\cdot}dx $ | 1 |
4789 | $ \, x \, $ | 1 |
4790 | $ {a}^{0.5}{\cdot}\left(100-p\right) $ | 1 |
4791 | $ \, x \, $ | 1 |
4792 | $ \, x \, $ | 1 |
4793 | $ \dfrac{12{x}^{3}}{4{x}^{2}} $ | 1 |
4794 | $ \, x \, $ | 1 |
4795 | $ \dfrac{300}{1+10{\mathrm{e}}^{-3t}}-27.275 $ | 1 |
4796 | $ x+(\dfrac{1}{x+1}) $ | 1 |
4797 | $ \, x \, $ | 1 |
4798 | $ 4{\cdot}\sqrt{x}-2x-7 $ | 1 |
4799 | $ 4x{\cdot}{\mathrm{e}}^{2x} $ | 1 |
4800 | $ \sqrt{4}{\cdot}{x}^{4}-3{x}^{3}+12x-8 $ | 1 |