Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
4551 | $ 1 $ | 1 |
4552 | $ \sin\left(y\right) $ | 1 |
4553 | $ {\mathrm{e}}^{{\left(\ln\left(x\right)\right)}^{2}} $ | 1 |
4554 | $ 48 $ | 1 |
4555 | $ 2{x}^{2}+x-1 $ | 1 |
4556 | $ \dfrac{1}{3}{\cdot}{\left(2-1\right)}^{\frac{-2}{3}} $ | 1 |
4557 | $ \dfrac{5x}{{x}^{2}+1} $ | 1 |
4558 | $ \, x \, $ | 1 |
4559 | $ \, x \, $ | 1 |
4560 | $ \, x \, $ | 1 |
4561 | $ \dfrac{20}{1+10{\mathrm{e}}^{-0.4x}} $ | 1 |
4562 | $ \, x \, $ | 1 |
4563 | $ 1 $ | 1 |
4564 | $ {\left(\sin\left(\dfrac{x}{25}\right)\right)}^{-1} $ | 1 |
4565 | $ \dfrac{{\mathrm{e}}^{{x}^{4}}}{\sqrt{3-{x}^{5}}} $ | 1 |
4566 | $ \dfrac{1}{3}{\cdot}{\left(x-1\right)}^{\frac{-2}{3}} $ | 1 |
4567 | $ \, x \, $ | 1 |
4568 | $ \, x \, $ | 1 |
4569 | $ \, x \, $ | 1 |
4570 | $ 1.4t{\cdot}\mathrm{e}-0.2t $ | 1 |
4571 | $ 3{\cdot}\sqrt{x}{\cdot}\left({x}^{3}-2{\cdot}\sqrt{x}+4\right) $ | 1 |
4572 | $ \, x \, $ | 1 |
4573 | $ \, x \, $ | 1 |
4574 | $ 1 $ | 1 |
4575 | $ 9x{\cdot}\cos\left(x\right)+{x}^{3}{\cdot}\sin\left(x\right) $ | 1 |
4576 | $ {\left(\sin\left(\dfrac{x}{25}\right)\right)}^{-1} $ | 1 |
4577 | $ \, x \, $ | 1 |
4578 | $ \dfrac{12{x}^{3}-8x+3}{4}{\cdot}{x}^{2} $ | 1 |
4579 | $ \dfrac{x+1}{{x}^{2}+2} $ | 1 |
4580 | $ \ln\left({\left({x}^{2}+6\right)}^{2}\right) $ | 1 |
4581 | $ \, x \, $ | 1 |
4582 | $ \, x \, $ | 1 |
4583 | $ \, x \, $ | 1 |
4584 | $ 1.4t{\cdot}\mathrm{e}-0.2t $ | 1 |
4585 | $ \, x \, $ | 1 |
4586 | $ \, x \, $ | 1 |
4587 | $ {\mathrm{e}}^{4x}{\cdot}\cos\left(9x\right) $ | 1 |
4588 | $ 1 $ | 1 |
4589 | $ y $ | 1 |
4590 | $ 2{\cdot}{\left(6{x}^{4}-4{x}^{4}-9{x}^{3}\right)}^{2} $ | 1 |
4591 | $ \dfrac{{x}^{3}}{\sqrt{4}-{x}^{3}} $ | 1 |
4592 | $ {\left(2x+30\right)}^{\frac{1}{2}} $ | 1 |
4593 | $ \dfrac{4{x}^{2}+7x+4}{x+1} $ | 1 |
4594 | $ \dfrac{-2}{9{\cdot}{\left(x-1\right)}^{\frac{5}{3}}} $ | 1 |
4595 | $ \dfrac{80}{x} $ | 1 |
4596 | $ \dfrac{14}{{\left(2x+5\right)}^{\frac{-1}{7}}} $ | 1 |
4597 | $ \, x \, $ | 1 |
4598 | $ \dfrac{3000}{p}-100 $ | 1 |
4599 | $ \, x \, $ | 1 |
4600 | $ \, x \, $ | 1 |