Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
4451 | $ \, x \, $ | 1 |
4452 | $ \tanh\left(\dfrac{2{\cdot}\sqrt{x}}{1}+x\right)+\tan\left(\dfrac{2{\cdot}\sqrt{x}}{1}+x\right) $ | 1 |
4453 | $ \, x \, $ | 1 |
4454 | $ \, x \, $ | 1 |
4455 | $ \left(2x+1\right){\cdot}\left(x+5\right) $ | 1 |
4456 | $ \, x \, $ | 1 |
4457 | $ {\left(1-{x}^{2}\right)}^{5}{\cdot}{\left(2+\cos\left(x\right)\right)}^{3} $ | 1 |
4458 | $ \, x \, $ | 1 |
4459 | $ \, x \, $ | 1 |
4460 | $ \, x \, $ | 1 |
4461 | $ \, x \, $ | 1 |
4462 | $ \, x \, $ | 1 |
4463 | $ \, x \, $ | 1 |
4464 | $ \, x \, $ | 1 |
4465 | $ \, x \, $ | 1 |
4466 | $ \, x \, $ | 1 |
4467 | $ \sin\left(8{\cdot}\ln\left(3x\right)\right) $ | 1 |
4468 | $ \dfrac{\ln\left(x\right)}{{x}^{2}+1} $ | 1 |
4469 | $ \, x \, $ | 1 |
4470 | $ {\left(\sin\left(2x\right)\right)}^{\cos\left(x\right)} $ | 1 |
4471 | $ \, x \, $ | 1 |
4472 | $ 2.5{\cdot}\left(\ln\left(1\right)+0.01t\right) $ | 1 |
4473 | $ 10x-3 $ | 1 |
4474 | $ \, x \, $ | 1 |
4475 | $ \, x \, $ | 1 |
4476 | $ {\left(\sqrt{x}\right)}^{2}+{\left(\sqrt{x}\right)}^{2}+\sqrt{x} $ | 1 |
4477 | $ \, x \, $ | 1 |
4478 | $ \, x \, $ | 1 |
4479 | $ \, x \, $ | 1 |
4480 | $ 6{x}^{4}+\dfrac{5}{3}{\cdot}{x}^{2}+3{\cdot}\sqrt{x} $ | 1 |
4481 | $ {x}^{3}{\cdot}{\left(\ln\left(2{x}^{2}-1\right)\right)}^{2} $ | 1 |
4482 | $ \, x \, $ | 1 |
4483 | $ \, x \, $ | 1 |
4484 | $ \dfrac{1}{0.2x} $ | 1 |
4485 | $ \, x \, $ | 1 |
4486 | $ 4{\cdot}\ln\left(\dfrac{{\left(1+{x}^{3}\right)}^{1}}{2}\right) $ | 1 |
4487 | $ 2+{\mathrm{e}}^{1-x}{\cdot}{x}^{3} $ | 1 |
4488 | $ \, x \, $ | 1 |
4489 | $ \sqrt{-3-x} $ | 1 |
4490 | $ \, x \, $ | 1 |
4491 | $ \, x \, $ | 1 |
4492 | $ \, x \, $ | 1 |
4493 | $ 10000{\cdot}{1.5}^{-t} $ | 1 |
4494 | $ {\left({\mathrm{e}}^{3}{\cdot}x-3\right)}^{0.5} $ | 1 |
4495 | $ \, x \, $ | 1 |
4496 | $ 6{\cdot}\sqrt{xy} $ | 1 |
4497 | $ 180{x}^{2}-720x $ | 1 |
4498 | $ \, x \, $ | 1 |
4499 | $ 2.5{\cdot}\ln\left(1+0.01t\right) $ | 1 |
4500 | $ \, x \, $ | 1 |