Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
4151 | $ \ln\left({x}^{2}\right) $ | 1 |
4152 | $ \, x \, $ | 1 |
4153 | $ 200x $ | 1 |
4154 | $ \ln\left(\dfrac{1000}{x}\right) $ | 1 |
4155 | $ \, x \, $ | 1 |
4156 | $ {x}^{4}-4{x}^{3}-5{x}^{2}+x-4 $ | 1 |
4157 | $ 2{x}^{3}-10x $ | 1 |
4158 | $ \, x \, $ | 1 |
4159 | $ \, x \, $ | 1 |
4160 | $ 1-{\left(1-\dfrac{x}{1000}\right)}^{3} $ | 1 |
4161 | $ {\left(\dfrac{{x}^{3}-1}{{u}^{3}+1}\right)}^{8} $ | 1 |
4162 | $ 3{x}^{2}+3 $ | 1 |
4163 | $ \ln\left(\dfrac{-1}{6}\right)-x $ | 1 |
4164 | $ \, x \, $ | 1 |
4165 | $ \, x \, $ | 1 |
4166 | $ \left(x-2\right){\cdot}\left({\left(\sqrt{x}\right)}^{2}+16\right) $ | 1 |
4167 | $ \sqrt{6x}+13 $ | 1 |
4168 | $ \, x \, $ | 1 |
4169 | $ \, x \, $ | 1 |
4170 | $ \, x \, $ | 1 |
4171 | $ x{\cdot}\sin\left(x\right) $ | 1 |
4172 | $ y $ | 1 |
4173 | $ 1.5{\cdot}\cos\left(\dfrac{{\pi}}{6}\right)+2 $ | 1 |
4174 | $ \dfrac{4}{{x}^{3}}-\dfrac{4}{3}{\cdot}{x}^{2} $ | 1 |
4175 | $ {23}^{4} $ | 1 |
4176 | $ \dfrac{x{\cdot}\ln\left(10\right)}{8{\cdot}\ln\left(10\right)} $ | 1 |
4177 | $ \, x \, $ | 1 |
4178 | $ \sin\left(19{\cdot}\ln\left(7x\right)\right) $ | 1 |
4179 | $ \, x \, $ | 1 |
4180 | $ \, x \, $ | 1 |
4181 | $ \, x \, $ | 1 |
4182 | $ 9{x}^{5}-4{x}^{3}-2{x}^{2}+5x-1 $ | 1 |
4183 | $ {2}^{x} $ | 1 |
4184 | $ {\left(1-4{x}^{2}\right)}^{0.5} $ | 1 |
4185 | $ \, x \, $ | 1 |
4186 | $ ft $ | 1 |
4187 | $ 4{x}^{5}-2{x}^{4}+3{x}^{2}+6x-7 $ | 1 |
4188 | $ {\mathrm{e}}^{2{x}^{2}-5x-5} $ | 1 |
4189 | $ \, x \, $ | 1 |
4190 | $ {x}{\exp{{\left({2}{x}\right)}}} $ | 1 |
4191 | $ \dfrac{3{x}^{4}-\ln\left(\sqrt{x}\right)}{{\mathrm{e}}^{3{x}^{2}}+\sqrt{\mathrm{e}}} $ | 1 |
4192 | $ \ln\left(1-{x}^{2}+2{x}^{4}\right) $ | 1 |
4193 | $ y $ | 1 |
4194 | $ \sin\left({\mathrm{e}}^{x}\right) $ | 1 |
4195 | $ \sqrt{{120}^{2}-{\left(50{\cdot}\sin\left(wt\right)\right)}^{2}} $ | 1 |
4196 | $ {x}^{2}+2x{y}^{2} $ | 1 |
4197 | $ \, x \, $ | 1 |
4198 | $ \dfrac{-2}{x} $ | 1 |
4199 | $ \dfrac{10{\mathrm{e}}^{-x}}{{\left(1+{\mathrm{e}}^{-x}\right)}^{2}} $ | 1 |
4200 | $ \, x \, $ | 1 |