Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
3851 | $ -9{\mathrm{e}}^{-6{\cdot}\sin\left(10{x}^{2}\right)} $ | 1 |
3852 | $ \dfrac{5x-3}{125} $ | 1 |
3853 | $ \, x \, $ | 1 |
3854 | $ \sqrt{1+2x} $ | 1 |
3855 | $ \left(4{x}^{2}-6\right){\cdot}\left(5{x}^{3}+5\right) $ | 1 |
3856 | $ \, x \, $ | 1 |
3857 | $ a{\cdot}{\mathrm{e}}^{-x}+bx{\cdot}{\mathrm{e}}^{-x} $ | 1 |
3858 | $ 10{x}^{0.5} $ | 1 |
3859 | $ \, x \, $ | 1 |
3860 | $ 3{x}^{2}-14x+15 $ | 1 |
3861 | $ \, x \, $ | 1 |
3862 | $ \, x \, $ | 1 |
3863 | $ \, x \, $ | 1 |
3864 | $ \dfrac{x-\sqrt{x}}{{x}^{2}} $ | 1 |
3865 | $ \, x \, $ | 1 |
3866 | $ \ln\left(3x\right){\cdot}10x $ | 1 |
3867 | $ \, x \, $ | 1 |
3868 | $ {\left(2-2x\right)}^{\frac{1}{3}} $ | 1 |
3869 | $ \, x \, $ | 1 |
3870 | $ 4x{\cdot}{\left(\sqrt{16}-{x}^{2}\right)}^{0.5} $ | 1 |
3871 | $ \, x \, $ | 1 |
3872 | $ \, x \, $ | 1 |
3873 | $ \, x \, $ | 1 |
3874 | $ \sqrt{127}{\cdot}x+1 $ | 1 |
3875 | $ \, x \, $ | 1 |
3876 | $ \, x \, $ | 1 |
3877 | $ \, x \, $ | 1 |
3878 | $ \, x \, $ | 1 |
3879 | $ 467x{\cdot}\tan\left(77\right) $ | 1 |
3880 | $ 20000x+40000y+t{\cdot}\left(2000xy-1000{\cdot}{\left(x-y\right)}^{2}\right) $ | 1 |
3881 | $ 9t+7{t}^{2} $ | 1 |
3882 | $ x{\cdot}\cos\left(2\right){\cdot}x $ | 1 |
3883 | $ \, x \, $ | 1 |
3884 | $ \, x \, $ | 1 |
3885 | $ 6{x}^{2}-14x+15 $ | 1 |
3886 | $ \, x \, $ | 1 |
3887 | $ \, x \, $ | 1 |
3888 | $ \, x \, $ | 1 |
3889 | $ a{\cdot}\sin\left(2.5x\right)+bx $ | 1 |
3890 | $ 4{\cdot}\left(\dfrac{3}{2}{\cdot}\dfrac{{2}^{\frac{d}{6}}}{d-6}{\cdot}{\left(\dfrac{1}{x}\right)}^{d}-\dfrac{d}{2{\cdot}\left(d-6\right)}{\cdot}{\left(\dfrac{1}{x}\right)}^{6}\right) $ | 1 |
3891 | $ -{\left(x-1\right)}^{0.5} $ | 1 |
3892 | $ \, x \, $ | 1 |
3893 | $ \cos\left(x\right) $ | 1 |
3894 | $ \, x \, $ | 1 |
3895 | $ \, x \, $ | 1 |
3896 | $ \dfrac{x}{{\left(6x-5\right)}^{9}} $ | 1 |
3897 | $ 3{x}^{2}+1 $ | 1 |
3898 | $ 22{\cdot}{\left(\tan\left(0.6x\right)\right)}^{2} $ | 1 |
3899 | $ 2.7x $ | 1 |
3900 | $ \cos\left(x\right){\cdot}4{\cdot}\sin\left(x\right) $ | 1 |