Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
3451 | $ {x}^{3}{\cdot}\sin\left(x\right) $ | 1 |
3452 | $ \ln\left(\sqrt{\dfrac{2x+1}{4x-2}}\right) $ | 1 |
3453 | $ \dfrac{100}{1+90{\mathrm{e}}^{-0.5t}} $ | 1 |
3454 | $ \, x \, $ | 1 |
3455 | $ \left(4{x}^{2}-2\right){\cdot}{\mathrm{e}}^{-{x}^{2}} $ | 1 |
3456 | $ \dfrac{1}{2}{\cdot}{\mathrm{e}}^{5x+1} $ | 1 |
3457 | $ \dfrac{{\left(-1.8{{\pi}}^{2}{\cdot}\sin\left(30{\pi}{\cdot}x\right)\right)}^{2}}{1000} $ | 1 |
3458 | $ \, x \, $ | 1 |
3459 | $ \, x \, $ | 1 |
3460 | $ \dfrac{2x}{{x}^{2}+9} $ | 1 |
3461 | $ \, x \, $ | 1 |
3462 | $ \, x \, $ | 1 |
3463 | $ \, x \, $ | 1 |
3464 | $ \, x \, $ | 1 |
3465 | $ \, x \, $ | 1 |
3466 | $ \, x \, $ | 1 |
3467 | $ 0.5x $ | 1 |
3468 | $ \sqrt{2{x}^{2}+2} $ | 1 |
3469 | $ \sin\left(\cos\left(1000x\right)\right) $ | 1 |
3470 | $ \sqrt{\ln\left(-x\right)} $ | 1 |
3471 | $ {x}^{3}{\cdot}\cos\left(x\right) $ | 1 |
3472 | $ \, x \, $ | 1 |
3473 | $ 2{x}^{2}+1 $ | 1 |
3474 | $ {\left(\mathrm{arccsc}\left(2x\right)\right)}^{4} $ | 1 |
3475 | $ -100{\cdot}\cos\left(0.8x\right)+160 $ | 1 |
3476 | $ \, x \, $ | 1 |
3477 | $ \, x \, $ | 1 |
3478 | $ \, x \, $ | 1 |
3479 | $ \, x \, $ | 1 |
3480 | $ \, x \, $ | 1 |
3481 | $ \, x \, $ | 1 |
3482 | $ \ln\left(2x+5\right) $ | 1 |
3483 | $ \, x \, $ | 1 |
3484 | $ \ln\left(\cos\left(x\right)\right) $ | 1 |
3485 | $ \, x \, $ | 1 |
3486 | $ {\left(32{x}^{13}\right)}^{\frac{1}{5}} $ | 1 |
3487 | $ \dfrac{5}{3}{\cdot}{x}^{3}-{x}^{\frac{3}{2}}+6 $ | 1 |
3488 | $ \ln\left({\left(2x+1\right)}^{2}{\cdot}{\left(x-4\right)}^{0.5}\right) $ | 1 |
3489 | $ \, x \, $ | 1 |
3490 | $ \, x \, $ | 1 |
3491 | $ -\left(8{x}^{3}-12x\right){\cdot}{\mathrm{e}}^{-{x}^{2}} $ | 1 |
3492 | $ -18{x}^{3}+10{x}^{3} $ | 1 |
3493 | $ \ln\left(\sin\left({5}^{{\left(4x\right)}^{3}}\right)\right) $ | 1 |
3494 | $ \ln\left(t-\dfrac{{t}^{2}}{4}\right) $ | 1 |
3495 | $ \, x \, $ | 1 |
3496 | $ \, x \, $ | 1 |
3497 | $ \, x \, $ | 1 |
3498 | $ \, x \, $ | 1 |
3499 | $ \, x \, $ | 1 |
3500 | $ \, x \, $ | 1 |