Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
3351 | $ -7hx $ | 1 |
3352 | $ \sqrt{4x-1} $ | 1 |
3353 | $ \cos\left(a{\cdot}\ln\left(x\right)\right) $ | 1 |
3354 | $ \, x \, $ | 1 |
3355 | $ \, x \, $ | 1 |
3356 | $ \, x \, $ | 1 |
3357 | $ \, x \, $ | 1 |
3358 | $ \, x \, $ | 1 |
3359 | $ 2-\dfrac{1}{x} $ | 1 |
3360 | $ \cos\left(8{x}^{8}+8{x}^{10}\right){\cdot}\ln\left(5{x}^{7}+6x\right) $ | 1 |
3361 | $ \, x \, $ | 1 |
3362 | $ {\left(100-{x}^{2}\right)}^{\frac{1}{3}} $ | 1 |
3363 | $ \ln\left(\coth\left(\dfrac{1}{2}{\cdot}x\right)\right) $ | 1 |
3364 | $ \, x \, $ | 1 |
3365 | $ 35 $ | 1 |
3366 | $ 2{\cdot}\ln\left(0.5x\right) $ | 1 |
3367 | $ f $ | 1 |
3368 | $ \cos\left(a{\cdot}\ln\left(x\right)\right) $ | 1 |
3369 | $ \sin\left(5x\right) $ | 1 |
3370 | $ \dfrac{1}{2}{\cdot}x $ | 1 |
3371 | $ \dfrac{\ln\left({\mathrm{e}}^{4}{\cdot}x+3\right)}{4} $ | 1 |
3372 | $ \, x \, $ | 1 |
3373 | $ {10}^{6}{\cdot}\left(1+\left(x-1\right){\cdot}{\mathrm{e}}^{-0.001x}\right) $ | 1 |
3374 | $ \, x \, $ | 1 |
3375 | $ \, x \, $ | 1 |
3376 | $ \dfrac{1}{{x}^{2}}+4{\cdot}{\left(\sqrt{x}\right)}^{3} $ | 1 |
3377 | $ 0.11215{x}^{2}-(\dfrac{4.47895x}{0.58876+0.21542{x}^{2}}) $ | 1 |
3378 | $ \, x \, $ | 1 |
3379 | $ 5.4-4{\cdot}\cos\left(\dfrac{{\pi}{\cdot}x}{15}\right) $ | 1 |
3380 | $ \, x \, $ | 1 |
3381 | $ \, x \, $ | 1 |
3382 | $ \, x \, $ | 1 |
3383 | $ \, x \, $ | 1 |
3384 | $ 12{x}^{3}-7{\cdot}\csc\left(x\right) $ | 1 |
3385 | $ \sin\left(5x\right) $ | 1 |
3386 | $ {x}^{3}+20x+32 $ | 1 |
3387 | $ \, x \, $ | 1 |
3388 | $ \dfrac{0.33{x}^{0.2}}{2}{\cdot}{x}^{2} $ | 1 |
3389 | $ \, x \, $ | 1 |
3390 | $ \, x \, $ | 1 |
3391 | $ xy $ | 1 |
3392 | $ \, x \, $ | 1 |
3393 | $ \, x \, $ | 1 |
3394 | $ {\left(t-1\right)}^{3}{\cdot}\left(20{t}^{3}-104{t}^{2}+143t-19\right)+30 $ | 1 |
3395 | $ \dfrac{1+x}{1-{\mathrm{e}}^{x}} $ | 1 |
3396 | $ 6{x}^{2} $ | 1 |
3397 | $ \arccos\left(x+1.858\right)+88.26 $ | 1 |
3398 | $ \sin\left(7x\right) $ | 1 |
3399 | $ {x}^{3}-7{x}^{2}+15x+4 $ | 1 |
3400 | $ \, x \, $ | 1 |