Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
3251 | $ {\mathrm{e}}^{x}{\cdot}\ln\left(3{x}^{3}+7x\right) $ | 1 |
3252 | $ fx-60x-25 $ | 1 |
3253 | $ \dfrac{1}{4}{\cdot}x-3 $ | 1 |
3254 | $ \, x \, $ | 1 |
3255 | $ \, x \, $ | 1 |
3256 | $ \, x \, $ | 1 |
3257 | $ f{\cdot}\tan\left(2x\right) $ | 1 |
3258 | $ \, x \, $ | 1 |
3259 | $ \, x \, $ | 1 |
3260 | $ \ln\left({x}^{4}-{x}^{3}-2{x}^{2}+2x+3{\cdot}\sin\left(x\right)\right) $ | 1 |
3261 | $ {\left(2{x}^{3}-3{x}^{2}+1\right)}^{-3} $ | 1 |
3262 | $ \, x \, $ | 1 |
3263 | $ \, x \, $ | 1 |
3264 | $ \dfrac{4}{1}+{\mathrm{e}}^{-\left(2x-5\right)} $ | 1 |
3265 | $ \dfrac{x{\cdot}{\mathrm{e}}^{x}}{6}+\dfrac{2x}{6} $ | 1 |
3266 | $ 2{\cdot}{\left(1-x\right)}^{1.5} $ | 1 |
3267 | $ \, x \, $ | 1 |
3268 | $ -4{\cdot}{\left(\dfrac{6}{x}-x\right)}^{2} $ | 1 |
3269 | $ \, x \, $ | 1 |
3270 | $ 2{x}^{3}+4xwrt-\dfrac{1}{2} $ | 1 |
3271 | | 1 |
3272 | $ \, x \, $ | 1 |
3273 | $ \, x \, $ | 1 |
3274 | $ {\left(\dfrac{\sqrt{{x}^{2}+\ln\left(x\right)}}{{\mathrm{e}}^{x}{\cdot}\sin\left(x\right)}\right)}^{3}+{5}^{x}{\cdot}\cos\left(x\right){\cdot}\tan\left(x\right) $ | 1 |
3275 | $ \dfrac{1}{{x}^{3}+16} $ | 1 |
3276 | $ \dfrac{x-6}{x-7} $ | 1 |
3277 | $ \, x \, $ | 1 |
3278 | $ -25x $ | 1 |
3279 | $ {x}^{2} $ | 1 |
3280 | $ \dfrac{{x}^{2}}{3}{\cdot}x+2 $ | 1 |
3281 | $ {\left(\arcsin\left(4x\right)\right)}^{2} $ | 1 |
3282 | $ 2{x}^{5}+4{x}^{2}-3{x}^{2}+x+6 $ | 1 |
3283 | $ 2{x}^{3}+4x $ | 1 |
3284 | $ 50+0.15x-3{\cdot}{\left(x-4\right)}^{2} $ | 1 |
3285 | $ \, x \, $ | 1 |
3286 | $ \, x \, $ | 1 |
3287 | $ \dfrac{\left(x+1\right){\cdot}\left(x-10\right)}{\left(x-1\right){\cdot}\left(x+10\right)} $ | 1 |
3288 | $ {\left(1-3x\right)}^{2}{\cdot}{\left({x}^{2}-2\right)}^{3} $ | 1 |
3289 | $ 1-{\mathrm{e}}^{x} $ | 1 |
3290 | $ 1.75 $ | 1 |
3291 | $ \, x \, $ | 1 |
3292 | $ 7x+73 $ | 1 |
3293 | $ y $ | 1 |
3294 | $ \, x \, $ | 1 |
3295 | $ \, x \, $ | 1 |
3296 | $ \, x \, $ | 1 |
3297 | $ \sin\left(2\right){\cdot}\left({2}^{2}-2\right) $ | 1 |
3298 | $ 1.2{\cdot}2{\pi}{\cdot}{x}^{2}+\dfrac{0.75{\cdot}2}{x} $ | 1 |
3299 | $ \dfrac{1}{1+ax} $ | 1 |
3300 | $ \, x \, $ | 1 |