Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
3051 | $ \cos\left(x\right)-7{\cdot}\tan\left(\color{orangered}{\square}\right) $ | 1 |
3052 | $ 10{x}^{2}+2{\cdot}\sin\left(x\right) $ | 1 |
3053 | $ \, x \, $ | 1 |
3054 | $ x $ | 1 |
3055 | $ \, x \, $ | 1 |
3056 | $ \, x \, $ | 1 |
3057 | $ \, x \, $ | 1 |
3058 | $ \dfrac{d}{d}{\cdot}y{\cdot}{\left({x}^{0.5}+{y}^{0.5}\right)}^{2} $ | 1 |
3059 | $ \, x \, $ | 1 |
3060 | $ \, x \, $ | 1 |
3061 | $ \dfrac{300}{3+17{\mathrm{e}}^{-2x}} $ | 1 |
3062 | $ \dfrac{{x}^{3}}{12}+{6}^{0.5}-5x+10 $ | 1 |
3063 | $ \, x \, $ | 1 |
3064 | $ \, x \, $ | 1 |
3065 | $ 3{\mathrm{e}}^{x}+4x{\cdot}{\mathrm{e}}^{x}+\sin\left(x\right)+{x}^{2} $ | 1 |
3066 | $ \dfrac{{\mathrm{e}}^{-x}}{1+{\mathrm{e}}^{x}} $ | 1 |
3067 | $ 10{x}^{2}+\sin\left(x\right) $ | 1 |
3068 | $ {x}^{2}{\cdot}{\mathrm{e}}^{x} $ | 1 |
3069 | $ \, x \, $ | 1 |
3070 | $ \, x \, $ | 1 |
3071 | $ \, x \, $ | 1 |
3072 | $ \dfrac{x+100}{2}-(\dfrac{4000}{x+100}) $ | 1 |
3073 | $ \, x \, $ | 1 |
3074 | $ \, x \, $ | 1 |
3075 | $ {\left(\dfrac{2x+1}{x-2}\right)}^{4} $ | 1 |
3076 | $ \, x \, $ | 1 |
3077 | $ \, x \, $ | 1 |
3078 | $ \, x \, $ | 1 |
3079 | $ \, x \, $ | 1 |
3080 | $ 10{x}^{2}+\sin\left(x\right) $ | 1 |
3081 | $ root{\cdot}\left({\mathrm{e}}^{3}{\cdot}x-2\right) $ | 1 |
3082 | $ \, x \, $ | 1 |
3083 | $ \dfrac{\dfrac{1}{x}-\dfrac{1}{7}}{x-7} $ | 1 |
3084 | $ {x}^{7}+2{x}^{6}+x $ | 1 |
3085 | $ \, x \, $ | 1 |
3086 | $ \dfrac{{5000}^{1}}{2} $ | 1 |
3087 | $ \dfrac{20}{3t+1}+30 $ | 1 |
3088 | $ {\left(-2x-2\right)}^{2}{\cdot}{\left(-3{x}^{2}-4x+3\right)}^{12} $ | 1 |
3089 | $ \, x \, $ | 1 |
3090 | $ \, x \, $ | 1 |
3091 | $ \, x \, $ | 1 |
3092 | $ \sqrt{\ln\left(\sin\left(2\right)\right)}{\cdot}x+5 $ | 1 |
3093 | $ \, x \, $ | 1 |
3094 | $ 2{x}^{3}+{x}^{2}-4x-3 $ | 1 |
3095 | $ \, x \, $ | 1 |
3096 | $ 10{x}^{2}+\sin\left(x\right) $ | 1 |
3097 | $ \dfrac{12{x}^{1}}{2} $ | 1 |
3098 | $ \tan\left({x}^{4}+3{x}^{3}+3{x}^{2}+2x\right) $ | 1 |
3099 | $ \dfrac{{x}^{-3}+7{\cdot}\sqrt{{x}^{3}}-4{x}^{2}}{2{\cdot}\sqrt{x}} $ | 1 |
3100 | $ \dfrac{2{{\pi}}^{-2}}{3} $ | 1 |