Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
2851 | $ \, x \, $ | 1 |
2852 | $ \, x \, $ | 1 |
2853 | $ \ln\left(x\right)+4 $ | 1 |
2854 | $ {\left(2{x}^{4}-9{x}^{2}\right)}^{18} $ | 1 |
2855 | $ \, x \, $ | 1 |
2856 | $ 3{t}^{3}{\cdot}\tanh\left(\dfrac{1}{{t}^{2}}\right) $ | 1 |
2857 | $ 9-4{\cdot}\sqrt{x} $ | 1 |
2858 | $ \dfrac{x}{10-x} $ | 1 |
2859 | $ {x}^{3}{\cdot}{\left(\dfrac{x+2}{x+1}\right)}^{4} $ | 1 |
2860 | $ \, x \, $ | 1 |
2861 | $ \, x \, $ | 1 |
2862 | $ \, x \, $ | 1 |
2863 | $ 6{\cdot}\sqrt{t}+\dfrac{3}{\sqrt{t}} $ | 1 |
2864 | $ \cos\left(x\right) $ | 1 |
2865 | $ \dfrac{5}{t} $ | 1 |
2866 | $ 0.5{x}^{3} $ | 1 |
2867 | $ {\left(1-{x}^{2}\right)}^{\frac{-3}{2}} $ | 1 |
2868 | $ {7}^{x}{\cdot}\ln\left(2\right){\cdot}x $ | 1 |
2869 | $ \, x \, $ | 1 |
2870 | $ {14}^{x}{\cdot}{1.2}^{x} $ | 1 |
2871 | $ \, x \, $ | 1 |
2872 | $ \, x \, $ | 1 |
2873 | $ 2{x}^{\sin\left(x\right)} $ | 1 |
2874 | $ \, x \, $ | 1 |
2875 | $ 1+{x}^{2} $ | 1 |
2876 | $ \ln\left(\dfrac{1}{36}\right) $ | 1 |
2877 | $ \dfrac{5}{t} $ | 1 |
2878 | $ 343{\cdot}{0.93}^{t}{t}^{0.35} $ | 1 |
2879 | $ 2{x}^{10}-\dfrac{3}{{x}^{2}} $ | 1 |
2880 | $ \, x \, $ | 1 |
2881 | $ 3{t}^{3}{\cdot}\tanh\left(\dfrac{1}{{t}^{2}}\right) $ | 1 |
2882 | $ \, x \, $ | 1 |
2883 | $ 12x+18{x}^{\frac{3}{2}}-6{x}^{2} $ | 1 |
2884 | $ {\left(1-{x}^{2}\right)}^{\frac{a}{2}} $ | 1 |
2885 | $ 14{\cdot}{1.2}^{x} $ | 1 |
2886 | $ \dfrac{1}{12}{\cdot}{\left(3x+1\right)}^{4}-8x $ | 1 |
2887 | $ \, x \, $ | 1 |
2888 | $ \, x \, $ | 1 |
2889 | $ \sqrt{4}+{x}^{2} $ | 1 |
2890 | $ \, x \, $ | 1 |
2891 | $ 5{\cdot}\sin\left(x\right)+3{\cdot}\cos\left(x\right) $ | 1 |
2892 | $ \dfrac{x-2}{7x+4} $ | 1 |
2893 | $ \, x \, $ | 1 |
2894 | $ \, x \, $ | 1 |
2895 | $ 6{\cdot}\ln\left(t\right) $ | 1 |
2896 | $ \dfrac{2x}{{\left(x-6\right)}^{2}} $ | 1 |
2897 | $ \, x \, $ | 1 |
2898 | $ 2{\cdot}\cot\left(x\right) $ | 1 |
2899 | $ {\left(\cosh\left(2x-3\right)\right)}^{-1} $ | 1 |
2900 | $ \dfrac{x}{900} $ | 1 |