Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
1901 | $ 5{x}^{4} $ | 2 |
1902 | $ 4{\cdot}\ln\left(x\right)+2{\cdot}\cos\left(x\right)+{x}^{4} $ | 2 |
1903 | $ \dfrac{1800}{2+3{\mathrm{e}}^{-0.2x}} $ | 2 |
1904 | $ \, x \, $ | 2 |
1905 | $ {\left(x+x{\cdot}{\mathrm{e}}^{x}\right)}^{5} $ | 2 |
1906 | $ \mathrm{e}^{2}{\cdot}x $ | 2 |
1907 | $ \sqrt{{\mathrm{e}}^{-x}-{\mathrm{e}}^{-2x}} $ | 2 |
1908 | $ \, x \, $ | 2 |
1909 | $ 3{\cdot}\arccos\left(\dfrac{x}{2}\right) $ | 2 |
1910 | $ \dfrac{8{w}^{2}-6w+4}{\sqrt{w}} $ | 2 |
1911 | $ 1{\cdot}{\left(8{x}^{3}+2{x}^{2}+7{x}^{4}\right)}^{2} $ | 2 |
1912 | $ {x}^{3}-\dfrac{3}{x}+7 $ | 2 |
1913 | $ \mathrm{e}^{2x} $ | 2 |
1914 | $ {x}^{3}+0.5{x}^{2}+x-0.5 $ | 2 |
1915 | $ 24x-1080{x}^{-6} $ | 2 |
1916 | $ 7{\cdot}\sqrt{x}+{\mathrm{e}}^{3x}{\cdot}\ln\left(x\right) $ | 2 |
1917 | $ \dfrac{\sqrt{25+{\left(12-x\right)}^{2}}}{3}+\dfrac{x}{5} $ | 2 |
1918 | $ \ln\left(\dfrac{4x+9}{7x-3}\right) $ | 2 |
1919 | $ 200{\cdot}\sqrt{25} $ | 2 |
1920 | $ 50{\cdot}\tan\left(x\right) $ | 2 |
1921 | $ 48{\cdot}\left(x-3\right) $ | 2 |
1922 | $ \tan\left(2x{\cdot}\ln\left(x\right)\right) $ | 2 |
1923 | $ 10q $ | 2 |
1924 | $ \ln\left(\dfrac{\sqrt{4x+9}}{\sqrt{7x-3}}\right) $ | 2 |
1925 | $ \dfrac{-1}{7}{\cdot}{x}^{\frac{-3}{4}} $ | 2 |
1926 | $ \left(6x+{\mathrm{e}}^{x}\right){\cdot}\left(5-\sqrt{x}\right) $ | 2 |
1927 | $ {\left({x}^{2}+7\right)}^{8} $ | 2 |
1928 | $ 100\mathrm{e}{\cdot}\dfrac{\ln\left(2\right)}{125}{\cdot}x $ | 2 |
1929 | $ 24x+216{x}^{-5} $ | 2 |
1930 | $ \, x \, $ | 2 |
1931 | $ xy+{y}^{2} $ | 2 |
1932 | $ \, x \, $ | 2 |
1933 | $ {\left(\sqrt{16}\right)}^{3} $ | 2 |
1934 | $ x+\sqrt{4-2x} $ | 2 |
1935 | $ \dfrac{\cot\left(x\right)}{x} $ | 2 |
1936 | $ -3{\cdot}{\left(5x+2\right)}^{2}+4 $ | 2 |
1937 | $ {\left(\dfrac{8x-1}{7-3x}\right)}^{5} $ | 2 |
1938 | $ \dfrac{\sqrt{x-1}{\cdot}\left(x-2\right)}{x-3} $ | 2 |
1939 | $ 1+\dfrac{\sqrt{x}}{5000} $ | 2 |
1940 | $ \left(2{x}^{2}-1\right){\cdot}{\left(7x+1\right)}^{3} $ | 2 |
1941 | $ \, x \, $ | 2 |
1942 | $ \dfrac{x{\cdot}\mathrm{e}^{x}}{6}+\dfrac{2x}{3} $ | 2 |
1943 | $ \dfrac{0.4}{x} $ | 2 |
1944 | $ 15{\cdot}{0.5}^{\frac{t}{26}} $ | 2 |
1945 | $ {1.05}^{2x} $ | 2 |
1946 | $ 0.5{\cdot}\left(thx+1\right) $ | 2 |
1947 | $ -3{\cdot}\sqrt{x}+\dfrac{2}{{x}^{4}} $ | 2 |
1948 | $ \dfrac{-20x}{{\left({x}^{2}-9\right)}^{2}} $ | 2 |
1949 | $ x+\sqrt{4-2x} $ | 2 |
1950 | $ 3{x}^{9}-6sqrx+\dfrac{4}{x} $ | 2 |