Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
1301 | $ 7{x}^{2}-6{x}^{-3}+4+3x $ | 2 |
1302 | $ \ln\left(\dfrac{1}{2}\right){\cdot}x $ | 2 |
1303 | $ \dfrac{{\mathrm{e}}^{x}{\cdot}\cos\left(x\right)-{\mathrm{e}}^{x}{\cdot}\sin\left(x\right)}{2} $ | 2 |
1304 | $ \, x \, $ | 2 |
1305 | $ \dfrac{7}{10x} $ | 2 |
1306 | $ {\mathrm{e}}^{3}{\cdot}x{\cdot}\sin\left(2x\right) $ | 2 |
1307 | $ \, x \, $ | 2 |
1308 | $ \dfrac{\mathrm{csch}\left({\mathrm{e}}^{8x}\right)}{\arctan\left(5{x}^{2}\right)} $ | 2 |
1309 | $ \tanh\left(x\right) $ | 2 |
1310 | $ \dfrac{8x-2{x}^{3}}{{x}^{2}+2} $ | 2 |
1311 | $ \dfrac{{\mathrm{e}}^{x}{\cdot}\sin\left(x\right)-{\mathrm{e}}^{x}{\cdot}\cos\left(x\right)}{2} $ | 2 |
1312 | $ \dfrac{x+1}{x-1} $ | 2 |
1313 | $ \, x \, $ | 2 |
1314 | $ t{\cdot}\ln\left(4\right){\cdot}t $ | 2 |
1315 | $ 13{\cdot}\sin\left(\color{orangered}{\square}\right) $ | 2 |
1316 | $ \dfrac{-7}{10{x}^{2}} $ | 2 |
1317 | $ 100{\cdot}{\left(1+\dfrac{x}{100}\right)}^{15} $ | 2 |
1318 | $ \dfrac{{x}^{3}}{9-{x}^{2}} $ | 2 |
1319 | $ 8x-{x}^{3} $ | 2 |
1320 | $ \dfrac{2}{3}{\cdot}{x}^{10}-6{x}^{-12}+2{\cdot}\sqrt{x}+4 $ | 2 |
1321 | $ \dfrac{\sqrt{17+h}-\sqrt{17}}{h} $ | 2 |
1322 | $ \, x \, $ | 2 |
1323 | $ \dfrac{{\mathrm{e}}^{-x}{\cdot}\sin\left(x\right)-{\mathrm{e}}^{-x}{\cdot}\cos\left(x\right)}{2}+c $ | 2 |
1324 | $ t{\cdot}\ln\left(4\right){\cdot}t $ | 2 |
1325 | $ \coth\left(7{x}^{2}\right) $ | 2 |
1326 | $ 0.4{x}^{5} $ | 2 |
1327 | $ 400{\cdot}{3}^{x} $ | 2 |
1328 | $ 2{\cdot}\ln\left(\dfrac{{\mathrm{e}}^{x}}{3-2x}\right) $ | 2 |
1329 | $ \dfrac{\sqrt{17+h}-\sqrt{17}}{h} $ | 2 |
1330 | $ \, x \, $ | 2 |
1331 | $ \dfrac{16}{xyz} $ | 2 |
1332 | $ \dfrac{1}{2}{\cdot}{\left(\arccos\left(3\right)\right)}^{x} $ | 2 |
1333 | $ \dfrac{6x-10x-10x}{6x-9{x}^{3}-8{x}^{3}} $ | 2 |
1334 | $ \, x \, $ | 2 |
1335 | $ \left({x}^{2}+2x+4\right){\cdot}\left(4{x}^{2}+5\right) $ | 2 |
1336 | $ \tan\left(\color{orangered}{\square}\right) $ | 2 |
1337 | $ \dfrac{9{\cdot}\sin\left(x\right)}{5}+\cos\left(3-2x\right) $ | 2 |
1338 | $ 2{x}^{3}+{\mathrm{e}}^{4}{\cdot}x $ | 2 |
1339 | $ y $ | 2 |
1340 | $ -2{x}^{5} $ | 2 |
1341 | $ \dfrac{-{\mathrm{e}}^{x}{\cdot}\sin\left(x\right)+{\mathrm{e}}^{x}{\cdot}\cos\left(x\right)}{2}+c $ | 2 |
1342 | $ t{\cdot}\ln\left(4t\right) $ | 2 |
1343 | $ \ln\left(2{x}^{3}-4{x}^{2}+1\right)+{\mathrm{e}}^{x} $ | 2 |
1344 | $ {\left(2x-3\right)}^{2}{\cdot}{\mathrm{e}}^{4x-1} $ | 2 |
1345 | $ {\left(24{x}^{2}-56x+32\right)}^{7} $ | 2 |
1346 | $ \sqrt{{120}^{2}-{\left(50{\cdot}\sin\left(wt\right)\right)}^{2}} $ | 2 |
1347 | $ {2}^{5}x $ | 2 |
1348 | $ -7{x}^{5} $ | 2 |
1349 | $ \left(2-x\right){\cdot}{\left(x-1\right)}^{-0.5} $ | 2 |
1350 | $ x+\ln\left(x\right)-5 $ | 2 |