Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
651 | $ \ln\left({x}^{2}+4\right) $ | 2 |
652 | $ \, x \, $ | 2 |
653 | $ squar{\cdot}\mathrm{e}{\cdot}root{\cdot}\left(3x+(squar{\cdot}\mathrm{e}{\cdot}root{\cdot}2x+squar{\cdot}\mathrm{e}{\cdot}rootx)\right) $ | 2 |
654 | $ \sqrt{\dfrac{z+6}{z-6}} $ | 2 |
655 | $ l $ | 2 |
656 | $ \dfrac{\sin\left(0.5{\cdot}\sqrt{x}\right)}{x} $ | 2 |
657 | $ 6{\cdot}\sqrt{t}+\dfrac{3}{\sqrt{t}} $ | 2 |
658 | $ fx $ | 2 |
659 | $ \dfrac{{\left(x+4\right)}^{3}{\cdot}{\left(6x+1\right)}^{-1}}{2}{\cdot}6 $ | 2 |
660 | $ 2{\cdot}{\left(\sin\left(x\right)\right)}^{2} $ | 2 |
661 | $ \dfrac{150}{x+3}-40{\mathrm{e}}^{-x} $ | 2 |
662 | $ \ln\left(\dfrac{5}{{x}^{3}{\cdot}\sec\left(x\right)}\right) $ | 2 |
663 | $ {\left(10-\dfrac{x}{200}\right)}^{2} $ | 2 |
664 | $ \, x \, $ | 2 |
665 | $ \dfrac{\sqrt{a+{x}^{2}}}{a} $ | 2 |
666 | $ 4{\cdot}\sqrt{4}{\cdot}\sqrt{x} $ | 2 |
667 | $ \sqrt{150+8x} $ | 2 |
668 | $ x $ | 2 |
669 | $ \ln\left(4\right){\cdot}x+\mathrm{e} $ | 2 |
670 | $ \sqrt{{x}^{3}} $ | 2 |
671 | $ 6{\cdot}\ln\left(t\right) $ | 2 |
672 | $ 343{\cdot}{0.93}^{t}{t}^{0.35} $ | 2 |
673 | $ \dfrac{4{\cdot}\left(4{x}^{2}-4x+8\right)}{{x}^{2}{\cdot}{\left(x-4\right)}^{2}} $ | 2 |
674 | $ \sqrt{\dfrac{1}{x-3}} $ | 2 |
675 | $ {\left(x+4\right)}^{3}{\cdot}{\left(6x+1\right)}^{-0.5}{\cdot}6 $ | 2 |
676 | $ 2{w}^{3}-6{x}^{2}w+4{x}^{3} $ | 2 |
677 | $ \dfrac{1-9t}{1}+6t $ | 2 |
678 | $ \, x \, $ | 2 |
679 | $ 0.1{\cdot}\cos\left(\color{orangered}{\square}\right) $ | 2 |
680 | $ \dfrac{2}{8t-1} $ | 2 |
681 | $ 130{\mathrm{e}}^{-0.17}{\cdot}t $ | 2 |
682 | $ {\mathrm{e}}^{\sqrt{3}}{\cdot}x{\cdot}\cot\left(\sqrt{3}{\cdot}x\right) $ | 2 |
683 | $ 2{x}^{5x} $ | 2 |
684 | $ {\left(\sqrt{4}+x\right)}^{2} $ | 2 |
685 | $ \dfrac{8}{9}{\cdot}\sin\left(2th{\cdot}\mathrm{e}{\cdot}ata\right) $ | 2 |
686 | $ 8{\cdot}\sin\left(x\right){\cdot}\cos\left(x\right) $ | 2 |
687 | $ \dfrac{1.2}{p} $ | 2 |
688 | $ \dfrac{300}{3}+17{x}^{-2} $ | 2 |
689 | $ \dfrac{{x}^{2}+\dfrac{{x}^{1}}{2}}{x} $ | 2 |
690 | $ x{\cdot}{2}^{x} $ | 2 |
691 | $ \dfrac{1-9t}{1+6t} $ | 2 |
692 | $ {\left(-6{x}^{2}-6\right)}^{7}{\cdot}{\left(-3{x}^{2}-4\right)}^{-5} $ | 2 |
693 | $ x $ | 2 |
694 | $ \, x \, $ | 2 |
695 | $ \, x \, $ | 2 |
696 | $ {\pi}{\cdot}{x}^{2} $ | 2 |
697 | $ 30 $ | 2 |
698 | $ \ln\left({x}^{2}+4\right) $ | 2 |
699 | $ {\left(x+4\right)}^{3}{\cdot}{\left(6x+1\right)}^{-0.5} $ | 2 |
700 | $ \dfrac{3}{2}{\cdot}{x}^{2}+2t+3 $ | 2 |