Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5701 | $ \, x \, $ | 1 |
5702 | $ {x}^{-\frac{1}{3}} $ | 1 |
5703 | $ \, x \, $ | 1 |
5704 | $ \, x \, $ | 1 |
5705 | $ \, x \, $ | 1 |
5706 | $ 1 $ | 1 |
5707 | $ \dfrac{4{x}^{5}-6{x}^{3}+7x}{3{x}^{4}-6x+12{x}^{2}} $ | 1 |
5708 | $ -295 $ | 1 |
5709 | $ \dfrac{1}{\sqrt{3}+x} $ | 1 |
5710 | $ \, x \, $ | 1 |
5711 | $ \left(x-1.5\right){\cdot}\left(\dfrac{18}{x}-1\right) $ | 1 |
5712 | $ b $ | 1 |
5713 | $ \, x \, $ | 1 |
5714 | $ \dfrac{t-3}{2} $ | 1 |
5715 | $ \, x \, $ | 1 |
5716 | $ \, x \, $ | 1 |
5717 | $ \, x \, $ | 1 |
5718 | $ 1 $ | 1 |
5719 | $ \ln\left(\dfrac{4{x}^{4}{\cdot}\sin\left(-7x\right)}{3x-3}\right) $ | 1 |
5720 | $ \dfrac{4x}{8x+1} $ | 1 |
5721 | $ \ln\left(4x+5\right){\cdot}\sqrt{x-8} $ | 1 |
5722 | $ {\left(\dfrac{x}{4}\right)}^{\frac{1}{4}} $ | 1 |
5723 | $ \, x \, $ | 1 |
5724 | $ 600{\cdot}\left(1-{\mathrm{e}}^{-0.5}{\cdot}x\right) $ | 1 |
5725 | $ \dfrac{{\mathrm{e}}^{{2}^{x}}{\cdot}\cos\left(x\right)-{x}^{3}}{\sqrt{{x}^{4}+1}} $ | 1 |
5726 | $ \, x \, $ | 1 |
5727 | $ \dfrac{7}{{x}^{2}} $ | 1 |
5728 | $ x{\cdot}\ln\left({x}^{2}+4\right) $ | 1 |
5729 | $ \, x \, $ | 1 |
5730 | $ {x}^{3}-4x+5 $ | 1 |
5731 | $ \, x \, $ | 1 |
5732 | $ \, x \, $ | 1 |
5733 | $ 1 $ | 1 |
5734 | $ \dfrac{0.4}{1-0.6x} $ | 1 |
5735 | $ \left(x+2{\cdot}\sqrt{x}\right){\cdot}{\mathrm{e}}^{x} $ | 1 |
5736 | $ \dfrac{\ln\left(5\right)-\sqrt{x}+2}{{\mathrm{e}}^{3x}+4{x}^{2}} $ | 1 |
5737 | $ {\left(\sqrt{x}\right)}^{4}-2x $ | 1 |
5738 | $ {\left(7+{u}^{2}\right)}^{5}{\cdot}{\left(2-6{u}^{2}\right)}^{8} $ | 1 |
5739 | $ \left(3{x}^{2}-5\right){\cdot}\left(3{x}^{2}-5\right){\cdot}\left(3{x}^{2}-5\right) $ | 1 |
5740 | $ \, x \, $ | 1 |
5741 | $ \sqrt{10}{\cdot}\cos\left(\dfrac{{\pi}{\cdot}t}{13}-4.322\right) $ | 1 |
5742 | $ 5{t}^{\frac{-3}{5}} $ | 1 |
5743 | $ \, x \, $ | 1 |
5744 | $ \sqrt{x+5} $ | 1 |
5745 | $ \, x \, $ | 1 |
5746 | $ 1 $ | 1 |
5747 | $ \, x \, $ | 1 |
5748 | $ y $ | 1 |
5749 | $ a $ | 1 |
5750 | $ ac{o}^{2}x $ | 1 |