Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5301 | $ {\left(4t+6\right)}^{5} $ | 1 |
5302 | $ {\sin{{\left({x}\right)}}} $ | 1 |
5303 | $ \, x \, $ | 1 |
5304 | $ \, x \, $ | 1 |
5305 | $ \, x \, $ | 1 |
5306 | $ \, x \, $ | 1 |
5307 | $ \dfrac{-3{t}^{2}-9}{4t} $ | 1 |
5308 | $ 1-\mathrm{e}^{\dfrac{-{x}^{2}}{4}} $ | 1 |
5309 | $ {\mathrm{e}}^{\sqrt{2x}} $ | 1 |
5310 | $ \sqrt{\ln\left(5x-7\right)} $ | 1 |
5311 | $ 3{x}^{3}{\cdot}2{\cdot}\left(5{x}^{2}-6x\right) $ | 1 |
5312 | $ \, x \, $ | 1 |
5313 | $ \ln\left(5\right){\cdot}\left(x-8\right) $ | 1 |
5314 | $ 1 $ | 1 |
5315 | $ {\sin{{\left({x}\right)}}} $ | 1 |
5316 | $ \, x \, $ | 1 |
5317 | $ \, x \, $ | 1 |
5318 | $ 13{x}^{2}+26x+15 $ | 1 |
5319 | $ \, x \, $ | 1 |
5320 | $ 90{\mathrm{e}}^{-\left(0.5x\right)} $ | 1 |
5321 | $ \dfrac{\dfrac{{\left(2+6t\right)}^{1}}{3}}{t} $ | 1 |
5322 | $ \dfrac{-3{t}^{2}+9}{4t} $ | 1 |
5323 | $ 4x $ | 1 |
5324 | $ \, x \, $ | 1 |
5325 | $ {x}^{2}+6x $ | 1 |
5326 | $ \dfrac{2}{{\left(1-2x\right)}^{2}} $ | 1 |
5327 | $ 1 $ | 1 |
5328 | $ \, x \, $ | 1 |
5329 | $ \, x \, $ | 1 |
5330 | $ \sqrt{{2}^{x}-3x+7} $ | 1 |
5331 | $ \, x \, $ | 1 |
5332 | $ \sqrt{800{x}^{2}-400x+100} $ | 1 |
5333 | $ \sqrt{2}+6t $ | 1 |
5334 | $ \left(7{x}^{4}-x+2\right){\cdot}\left(-{x}^{5}+4\right) $ | 1 |
5335 | $ \dfrac{6}{\sqrt{12x}} $ | 1 |
5336 | $ 1 $ | 1 |
5337 | $ \, x \, $ | 1 |
5338 | $ \tan\left(\color{orangered}{\square}\right) $ | 1 |
5339 | $ \, x \, $ | 1 |
5340 | $ \, x \, $ | 1 |
5341 | $ \left(7{x}^{4}-x+2\right){\cdot}\left(-{x}^{5}+4\right) $ | 1 |
5342 | $ \ln\left(\dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) $ | 1 |
5343 | $ \dfrac{\left(x-1\right){\cdot}\left({x}^{2}+x+1\right)}{9} $ | 1 |
5344 | $ \dfrac{{x}^{2}+2x}{4x} $ | 1 |
5345 | $ 2{\cdot}\sin\left(4x\right) $ | 1 |
5346 | $ \tan\left({\mathrm{e}}^{2}{\cdot}x\right) $ | 1 |
5347 | $ \, x \, $ | 1 |
5348 | $ 1 $ | 1 |
5349 | $ \dfrac{2{x}^{2}+3x+2}{\sqrt{x}} $ | 1 |
5350 | $ \, x \, $ | 1 |