Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5151 | $ 1 $ | 1 |
5152 | $ 0.5{\cdot}\left(x+1\right){\cdot}{\left(x-2\right)}^{2}{\cdot}\left(x-5\right) $ | 1 |
5153 | $ -1.7{\mathrm{e}}^{-0.2}{\cdot}x $ | 1 |
5154 | $ \, x \, $ | 1 |
5155 | $ \, x \, $ | 1 |
5156 | $ \, x \, $ | 1 |
5157 | $ \dfrac{1}{2}{\cdot}\left(\sinh\left(2\right){\cdot}x-2x\right) $ | 1 |
5158 | $ {x}^{4}-2x $ | 1 |
5159 | $ \, x \, $ | 1 |
5160 | $ \, x \, $ | 1 |
5161 | $ 1 $ | 1 |
5162 | $ \, x \, $ | 1 |
5163 | $ f{\cdot}i{\cdot}ndth{\cdot}\mathrm{e}{\cdot}d{\cdot}\mathrm{e}{\cdot}r{\cdot}i{\cdot}vat{\cdot}i{\cdot}v{\cdot}\mathrm{e}{\cdot}9{x}^{5}-7{\cdot}\sin\left(x\right)+3{\mathrm{e}}^{x}+2i{\cdot}nx $ | 1 |
5164 | $ 12{\cdot}\cos\left(\color{orangered}{\square}\right) $ | 1 |
5165 | $ \, x \, $ | 1 |
5166 | $ \dfrac{{x}^{3}}{2{x}^{7}} $ | 1 |
5167 | $ {\left(1+\sin\left(7\right){\cdot}t\right)}^{-4} $ | 1 |
5168 | $ \, x \, $ | 1 |
5169 | $ {\left(\cosh\left(4x\right)\right)}^{3}{\cdot}{x}^{2} $ | 1 |
5170 | $ \dfrac{\sqrt{x}-1}{\sqrt{x}+1} $ | 1 |
5171 | $ {\mathrm{e}}^{x}{\cdot}{\left(\ln\left({\pi}{\cdot}x\right)\right)}^{2} $ | 1 |
5172 | $ \, x \, $ | 1 |
5173 | $ -a{\cdot}\ln\left(1-{\mathrm{e}}^{x}\right) $ | 1 |
5174 | $ 1+{x}^{4} $ | 1 |
5175 | $ \, x \, $ | 1 |
5176 | $ \, x \, $ | 1 |
5177 | $ 1 $ | 1 |
5178 | $ 0.1{x}^{2}{\cdot}{\mathrm{e}}^{x}-2x-10 $ | 1 |
5179 | $ 15-x-6{x}^{3}{\cdot}{\mathrm{e}}^{-0.8}{\cdot}x $ | 1 |
5180 | $ \, x \, $ | 1 |
5181 | $ \, x \, $ | 1 |
5182 | $ 40000{\cdot}{1.05}^{x} $ | 1 |
5183 | $ \dfrac{-\left(3{t}^{2}-9\right)}{4}{\cdot}t $ | 1 |
5184 | $ 150 $ | 1 |
5185 | $ \, x \, $ | 1 |
5186 | $ 500+3{\cdot}\ln\left(4\right){\cdot}t $ | 1 |
5187 | $ \, x \, $ | 1 |
5188 | $ 2{\cdot}\left(0.5-5x\right){\cdot}\left(1-2x\right) $ | 1 |
5189 | $ \, x \, $ | 1 |
5190 | $ \, x \, $ | 1 |
5191 | $ 1 $ | 1 |
5192 | $ \dfrac{250}{x} $ | 1 |
5193 | $ \, x \, $ | 1 |
5194 | $ \, x \, $ | 1 |
5195 | $ \, x \, $ | 1 |
5196 | $ 20{\mathrm{e}}^{-0.01}{\cdot}t $ | 1 |
5197 | $ \sqrt{{x}^{2}+2} $ | 1 |
5198 | $ \, x \, $ | 1 |
5199 | $ {\left(1+\sin\left(7t\right)\right)}^{-4} $ | 1 |
5200 | $ \dfrac{-\left(3{t}^{2}-9\right)}{4}{\cdot}t $ | 1 |