Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
4951 | $ \dfrac{4{x}^{3}+x}{{x}^{2}} $ | 1 |
4952 | $ 5{\cdot}\cos\left(8{x}^{2}\right) $ | 1 |
4953 | $ \sqrt{x-4} $ | 1 |
4954 | $ \dfrac{1-{\mathrm{e}}^{-ax}}{x} $ | 1 |
4955 | $ \, x \, $ | 1 |
4956 | $ 1 $ | 1 |
4957 | $ -5x+4 $ | 1 |
4958 | $ 6{\cdot}{1.5}^{x} $ | 1 |
4959 | $ \, x \, $ | 1 |
4960 | $ \, x \, $ | 1 |
4961 | $ \, x \, $ | 1 |
4962 | $ {\mathrm{e}}^{14}+5 $ | 1 |
4963 | $ \, x \, $ | 1 |
4964 | $ -1*osqrt2+369-369-1+0+0+1 $ | 1 |
4965 | $ \, x \, $ | 1 |
4966 | $ \, x \, $ | 1 |
4967 | $ -\left(3x+1\right){\cdot}\left(2x+3\right){\cdot}\left(2x+1 $ | 1 |
4968 | $ 3x{\cdot}\ln\left(x\right) $ | 1 |
4969 | $ \, x \, $ | 1 |
4970 | $ \, x \, $ | 1 |
4971 | $ {\mathrm{e}}^{{\mathrm{e}}^{\mathrm{e}}} $ | 1 |
4972 | $ \sin\left(x\right){\cdot}\cos\left(x\right) $ | 1 |
4973 | $ 3x{\cdot}\ln\left(4x\right) $ | 1 |
4974 | $ \, x \, $ | 1 |
4975 | $ {\left(x-3\right)}^{2}{\cdot}\left(x-1\right) $ | 1 |
4976 | $ \dfrac{-6{x}^{\frac{1}{10}}}{10}{\cdot}{x}^{-7} $ | 1 |
4977 | $ {\left(\sqrt{\mathrm{e}}\right)}^{\sin\left(3\right)}{\cdot}x+1 $ | 1 |
4978 | $ \, x \, $ | 1 |
4979 | $ 4b{t}^{2}+6{t}^{3}+3c{t}^{5} $ | 1 |
4980 | $ 1 $ | 1 |
4981 | $ \, x \, $ | 1 |
4982 | $ \, x \, $ | 1 |
4983 | $ \dfrac{x-4}{x} $ | 1 |
4984 | $ 6-2{\cdot}\left(x+6\right) $ | 1 |
4985 | $ \dfrac{2{x}^{2}-x}{{x}^{\frac{1}{2}}}-2{\cdot}\ln\left(\dfrac{x}{2}\right) $ | 1 |
4986 | $ \dfrac{3x-5}{{x}^{2}+3x+2} $ | 1 |
4987 | $ \, x \, $ | 1 |
4988 | $ {4}^{5x} $ | 1 |
4989 | $ \ln\left(\dfrac{1}{3}{\cdot}x\right) $ | 1 |
4990 | $ \dfrac{1}{4}{\cdot}\left(40-x\right) $ | 1 |
4991 | $ \tan\left(\color{orangered}{\square}\right) $ | 1 |
4992 | $ 4b{t}^{2}+6{t}^{3}+3c{t}^{5} $ | 1 |
4993 | $ 1 $ | 1 |
4994 | $ \, x \, $ | 1 |
4995 | $ \, x \, $ | 1 |
4996 | $ {\pi}{\cdot}{r}^{2} $ | 1 |
4997 | $ {72}^{x} $ | 1 |
4998 | $ \sin\left(x\right) $ | 1 |
4999 | $ 12100+200x+{x}^{2} $ | 1 |
5000 | $ {\left(2x-3\right)}^{2}{\cdot}\left(x-1\right) $ | 1 |