The synthetic division table is:
$$ \begin{array}{c|rrrr}-3&1&-2&-4&-4\\& & -3& 15& \color{black}{-33} \\ \hline &\color{blue}{1}&\color{blue}{-5}&\color{blue}{11}&\color{orangered}{-37} \end{array} $$The remainder when $ x^{3}-2x^{2}-4x-4 $ is divided by $ x+3 $ is $ \, \color{red}{ -37 } $.
We can find remainder using synthetic division method.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 3 = 0 $ ( $ x = \color{blue}{ -3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&-2&-4&-4\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-3&\color{orangered}{ 1 }&-2&-4&-4\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 1 } = \color{blue}{ -3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&-2&-4&-4\\& & \color{blue}{-3} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ \left( -3 \right) } = \color{orangered}{ -5 } $
$$ \begin{array}{c|rrrr}-3&1&\color{orangered}{ -2 }&-4&-4\\& & \color{orangered}{-3} & & \\ \hline &1&\color{orangered}{-5}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -5 \right) } = \color{blue}{ 15 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&-2&-4&-4\\& & -3& \color{blue}{15} & \\ \hline &1&\color{blue}{-5}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ 15 } = \color{orangered}{ 11 } $
$$ \begin{array}{c|rrrr}-3&1&-2&\color{orangered}{ -4 }&-4\\& & -3& \color{orangered}{15} & \\ \hline &1&-5&\color{orangered}{11}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 11 } = \color{blue}{ -33 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-3}&1&-2&-4&-4\\& & -3& 15& \color{blue}{-33} \\ \hline &1&-5&\color{blue}{11}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ \left( -33 \right) } = \color{orangered}{ -37 } $
$$ \begin{array}{c|rrrr}-3&1&-2&-4&\color{orangered}{ -4 }\\& & -3& 15& \color{orangered}{-33} \\ \hline &\color{blue}{1}&\color{blue}{-5}&\color{blue}{11}&\color{orangered}{-37} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ -37 }\right) $.