The synthetic division table is:
$$ \begin{array}{c|rrrr}3&1&-6&11&-6\\& & 3& -9& \color{black}{6} \\ \hline &\color{blue}{1}&\color{blue}{-3}&\color{blue}{2}&\color{orangered}{0} \end{array} $$The remainder when $ x^{3}-6x^{2}+11x-6 $ is divided by $ x-3 $ is $ \, \color{red}{ 0 } $.
We can find remainder using synthetic division method.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-6&11&-6\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}3&\color{orangered}{ 1 }&-6&11&-6\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 1 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-6&11&-6\\& & \color{blue}{3} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ 3 } = \color{orangered}{ -3 } $
$$ \begin{array}{c|rrrr}3&1&\color{orangered}{ -6 }&11&-6\\& & \color{orangered}{3} & & \\ \hline &1&\color{orangered}{-3}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -3 \right) } = \color{blue}{ -9 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-6&11&-6\\& & 3& \color{blue}{-9} & \\ \hline &1&\color{blue}{-3}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 11 } + \color{orangered}{ \left( -9 \right) } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrrr}3&1&-6&\color{orangered}{ 11 }&-6\\& & 3& \color{orangered}{-9} & \\ \hline &1&-3&\color{orangered}{2}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 2 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&1&-6&11&-6\\& & 3& -9& \color{blue}{6} \\ \hline &1&-3&\color{blue}{2}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ 6 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}3&1&-6&11&\color{orangered}{ -6 }\\& & 3& -9& \color{orangered}{6} \\ \hline &\color{blue}{1}&\color{blue}{-3}&\color{blue}{2}&\color{orangered}{0} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ 0 }\right) $.