The synthetic division table is:
$$ \begin{array}{c|rrr}0&1&-2&5\\& & 0& \color{black}{0} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{orangered}{5} \end{array} $$The remainder when $ x^{2}-2x+5 $ is divided by $ x $ is $ \, \color{red}{ 5 } $.
We can find remainder using synthetic division method.
Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rrr}\color{blue}{0}&1&-2&5\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}0&\color{orangered}{ 1 }&-2&5\\& & & \\ \hline &\color{orangered}{1}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 1 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&1&-2&5\\& & \color{blue}{0} & \\ \hline &\color{blue}{1}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 0 } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrr}0&1&\color{orangered}{ -2 }&5\\& & \color{orangered}{0} & \\ \hline &1&\color{orangered}{-2}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&1&-2&5\\& & 0& \color{blue}{0} \\ \hline &1&\color{blue}{-2}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 0 } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrr}0&1&-2&\color{orangered}{ 5 }\\& & 0& \color{orangered}{0} \\ \hline &\color{blue}{1}&\color{blue}{-2}&\color{orangered}{5} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ 5 }\right) $.