The synthetic division table is:
$$ \begin{array}{c|rrr}5&4&0&-2\\& & 20& \color{black}{100} \\ \hline &\color{blue}{4}&\color{blue}{20}&\color{orangered}{98} \end{array} $$The remainder when $ 4x^{2}-2 $ is divided by $ x-5 $ is $ \, \color{red}{ 98 } $.
We can find remainder using synthetic division method.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -5 = 0 $ ( $ x = \color{blue}{ 5 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{5}&4&0&-2\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}5&\color{orangered}{ 4 }&0&-2\\& & & \\ \hline &\color{orangered}{4}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 5 } \cdot \color{blue}{ 4 } = \color{blue}{ 20 } $.
$$ \begin{array}{c|rrr}\color{blue}{5}&4&0&-2\\& & \color{blue}{20} & \\ \hline &\color{blue}{4}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 20 } = \color{orangered}{ 20 } $
$$ \begin{array}{c|rrr}5&4&\color{orangered}{ 0 }&-2\\& & \color{orangered}{20} & \\ \hline &4&\color{orangered}{20}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 5 } \cdot \color{blue}{ 20 } = \color{blue}{ 100 } $.
$$ \begin{array}{c|rrr}\color{blue}{5}&4&0&-2\\& & 20& \color{blue}{100} \\ \hline &4&\color{blue}{20}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 100 } = \color{orangered}{ 98 } $
$$ \begin{array}{c|rrr}5&4&0&\color{orangered}{ -2 }\\& & 20& \color{orangered}{100} \\ \hline &\color{blue}{4}&\color{blue}{20}&\color{orangered}{98} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ 98 }\right) $.