The synthetic division table is:
$$ \begin{array}{c|rrrr}1&3&-7&6&-14\\& & 3& -4& \color{black}{2} \\ \hline &\color{blue}{3}&\color{blue}{-4}&\color{blue}{2}&\color{orangered}{-12} \end{array} $$The remainder when $ 3x^{3}-7x^{2}+6x-14 $ is divided by $ x-1 $ is $ \, \color{red}{ -12 } $.
We can find remainder using synthetic division method.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{1}&3&-7&6&-14\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}1&\color{orangered}{ 3 }&-7&6&-14\\& & & & \\ \hline &\color{orangered}{3}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 3 } = \color{blue}{ 3 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&3&-7&6&-14\\& & \color{blue}{3} & & \\ \hline &\color{blue}{3}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -7 } + \color{orangered}{ 3 } = \color{orangered}{ -4 } $
$$ \begin{array}{c|rrrr}1&3&\color{orangered}{ -7 }&6&-14\\& & \color{orangered}{3} & & \\ \hline &3&\color{orangered}{-4}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ \left( -4 \right) } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&3&-7&6&-14\\& & 3& \color{blue}{-4} & \\ \hline &3&\color{blue}{-4}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrrr}1&3&-7&\color{orangered}{ 6 }&-14\\& & 3& \color{orangered}{-4} & \\ \hline &3&-4&\color{orangered}{2}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 2 } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&3&-7&6&-14\\& & 3& -4& \color{blue}{2} \\ \hline &3&-4&\color{blue}{2}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ 2 } = \color{orangered}{ -12 } $
$$ \begin{array}{c|rrrr}1&3&-7&6&\color{orangered}{ -14 }\\& & 3& -4& \color{orangered}{2} \\ \hline &\color{blue}{3}&\color{blue}{-4}&\color{blue}{2}&\color{orangered}{-12} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ -12 }\right) $.