The synthetic division table is:
$$ \begin{array}{c|rrrrr}-2&-1&-2&3&4&-4\\& & 2& 0& -6& \color{black}{4} \\ \hline &\color{blue}{-1}&\color{blue}{0}&\color{blue}{3}&\color{blue}{-2}&\color{orangered}{0} \end{array} $$The remainder when $ -x^{4}-2x^{3}+3x^{2}+4x-4 $ is divided by $ x+2 $ is $ \, \color{red}{ 0 } $.
We can find remainder using synthetic division method.
Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&-1&-2&3&4&-4\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-2&\color{orangered}{ -1 }&-2&3&4&-4\\& & & & & \\ \hline &\color{orangered}{-1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -1 \right) } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&-1&-2&3&4&-4\\& & \color{blue}{2} & & & \\ \hline &\color{blue}{-1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ 2 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}-2&-1&\color{orangered}{ -2 }&3&4&-4\\& & \color{orangered}{2} & & & \\ \hline &-1&\color{orangered}{0}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&-1&-2&3&4&-4\\& & 2& \color{blue}{0} & & \\ \hline &-1&\color{blue}{0}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 3 } + \color{orangered}{ 0 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrrr}-2&-1&-2&\color{orangered}{ 3 }&4&-4\\& & 2& \color{orangered}{0} & & \\ \hline &-1&0&\color{orangered}{3}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 3 } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&-1&-2&3&4&-4\\& & 2& 0& \color{blue}{-6} & \\ \hline &-1&0&\color{blue}{3}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 4 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrrr}-2&-1&-2&3&\color{orangered}{ 4 }&-4\\& & 2& 0& \color{orangered}{-6} & \\ \hline &-1&0&3&\color{orangered}{-2}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-2}&-1&-2&3&4&-4\\& & 2& 0& -6& \color{blue}{4} \\ \hline &-1&0&3&\color{blue}{-2}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ 4 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrrr}-2&-1&-2&3&4&\color{orangered}{ -4 }\\& & 2& 0& -6& \color{orangered}{4} \\ \hline &\color{blue}{-1}&\color{blue}{0}&\color{blue}{3}&\color{blue}{-2}&\color{orangered}{0} \end{array} $$Remainder is the last entry in the bottom row $ \left(\color{red}{ 0 }\right) $.